Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure.
View Article and Find Full Text PDFOne of the essential injuries caused by moderate to high-intensity and short-duration physical activities is the overproduction of reactive oxygen species (ROS), damaging various body tissues such as skeletal muscle (SM). However, ROS is easily controlled by antioxidant defense systems during low to moderate intensity and long-term exercises. In stressful situations, antioxidant supplements are recommended to prevent ROS damage.
View Article and Find Full Text PDFL-citrulline (L-Cit) is a nonessential amino acid that stimulates nitric oxide (NO) production and improves exercise performance by reducing muscle damage indices; however, the direct benefits of L-Cit on antioxidant markers are unclear. The aim of this study was to examine antioxidant responses to high-intensity interval exercise following acute L-Cit supplementation. Nine young men (21 ± 1 years) participated in a double-blind crossover study in which they received 12 g of L-Cit and placebo (PL) an hour prior to high-intensity interval exercise on two occasions, separated by a seven-day washout period.
View Article and Find Full Text PDF