Synthetic organic dyes, which are resistant to biodegradation, pose a notable health risk, potentially leading to cancer and respiratory infections. Researchers have addressed this concern by exploring physicochemical methods to remove organic dyes from wastewater. A particularly promising solution involves modified biochar adsorbents, which demonstrate high efficiency in organic dye removal.
View Article and Find Full Text PDFThe excessive use of organic pollutants like organic dyes, which enter the water environment, has led to a significant environmental problem. Finding an efficient method to degrade these pollutants is urgent due to their detrimental effects on aquatic organisms and human health. Carbon-based catalysts are emerging as highly promising and efficient alternatives to metal catalysts in Fenton-like systems.
View Article and Find Full Text PDFHeavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion.
View Article and Find Full Text PDFPharmaceutical residues have been identified as a priority contaminant due to their toxicity to organisms and the ecosystem as representative refractory organic compounds in water. Therefore, using efficient treatment methods to remove them from wastewater has become a crucial topic of research. Advanced oxidation processes (AOPs) based on the sulfate radical have gained increased attention in recent years due to their superior performance and adaptability in the decomposition of refractory organic contaminants.
View Article and Find Full Text PDFAdvanced oxidation processes (AOPs) are considered as an effective and promising method for the degradation and mineralization of aqueous recalcitrant organic pollutants. In this study, application of ozonation and various types of AOPs including photocatalysis, Fenton alone and their combinations were investigated and compared for the degradation and mineralization of chloroacetic acids (CAAs) in aqueous solutions, using a planar falling film reactor. CAAs are widely available in water treated by chlorination processes and are resistance against ozonation in the darkness.
View Article and Find Full Text PDF