Lateral heterostructures combining two multilayer group IV chalcogenide van der Waals semiconductors have attracted interest for optoelectronics, twistronics, and valleytronics, owing to their structural anisotropy, bulk-like electronic properties, enhanced optical thickness, and vertical interfaces enabling in-plane charge manipulation/separation, perpendicular to the trajectory of incident light. Group IV monochalcogenides support propagating photonic waveguide modes, but their interference gives rise to complex light emission patterns throughout the visible/near-infrared range both in uniform flakes and single-interface lateral heterostructures. Here, this work demonstrates the judicious integration of pure and alloyed monochalcogenide crystals into multimaterial heterostructures with unique photonic properties, notably the ability to select photonic modes with targeted discrete energies through geometric factors rather than band engineering.
View Article and Find Full Text PDFUltrathin MoS has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first-principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation-induced defects can induce a rotation-dependent moiré pattern in vertically stacked homobilayers of MoS by deforming the atomically thin material and exciting surface acoustic waves (SAWs).
View Article and Find Full Text PDFHigh-Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance.
View Article and Find Full Text PDFFabrication of transition metal dichalcogenide quantum dots (QDs) is complex and requires submerging powders in binary solvents and constant tuning of wavelength and pulsed frequency of light to achieve a desired reaction. Instead of liquid state photoexfoliation, we utilize infrared laser irradiation of free-standing MoSflakes in transmission electron microscope (TEM) to achieve solid-state multi-level photoexfoliation of QDs. By investigating the steps involved in photochemical reaction between the surface of MoSand the laser beam, we gain insight into each step of the photoexfoliation mechanism and observe high yield production of QDs, led by an inhomogeneous crystalline size distribution.
View Article and Find Full Text PDF