Publications by authors named "Korutla L"

There is a critical need for biomarkers of acute cellular rejection (ACR) in organ transplantation. We hypothesized that ACR leads to changes in donor-reactive T cell small extracellular vesicle (sEV) profiles in transplant recipient circulation that match the kinetics of alloreactive T cell activation. In rodent heart transplantation, circulating T cell sEV quantities (P < .

View Article and Find Full Text PDF

Aims: Hypoplastic left heart syndrome (HLHS) survival relies on surgical reconstruction of the right ventricle (RV) to provide systemic circulation. This substantially increases the RV load, wall stress, maladaptive remodelling, and dysfunction, which in turn increases the risk of death or transplantation.

Methods And Results: We conducted a phase 1 open-label multicentre trial to assess the safety and feasibility of Lomecel-B as an adjunct to second-stage HLHS surgical palliation.

View Article and Find Full Text PDF

Restoration of lymphatic drainage across the bronchial anastomosis after lung transplantation requires several weeks. As donor antigen and antigen presenting cell trafficking via lymphatics into graft-draining lymph nodes is an important component of the alloresponse, alternative pathways must exist that account for rapid rejection after pulmonary transplantation. Here, we describe a novel allorecognition pathway mediated through donor extracellular vesicle (EV) trafficking to mediastinal lymph nodes via the pleural space.

View Article and Find Full Text PDF

Nonhealing wounds are a significant burden for the health care system all over the world. Existing treatment options are not enough to promote healing, highlighting the urgent need for improved therapies. In addition, the current advancements in tissue-engineered skin constructs and stem cell-based therapies are facing significant hurdles due to the absence of a renewable source of functional cells.

View Article and Find Full Text PDF

Background: There is a critical need for development of biomarkers to noninvasively monitor for lung transplant rejection. We investigated the potential of circulating donor lung-specific exosome profiles for time-sensitive diagnosis of acute rejection in a rat orthotopic lung transplant model.

Methods: Left lungs from Wistar transgenic rats expressing human CD63-GFP, an exosome marker, were transplanted into fully MHC-mismatched Lewis recipients or syngeneic controls.

View Article and Find Full Text PDF

Background: Endomyocardial biopsy remains the gold standard for distinguishing types of immunologic injury-acute versus antibody-mediated rejection (AMR). Exosomes are tissue-specific extracellular microvesicles released by many cell types, including transplanted heart. Circulating transplant heart exosomes express donor-specific human leukocyte antigen (HLA) I molecules.

View Article and Find Full Text PDF

The intrahepatic milieu is inhospitable to intraportal islet allografts, limiting their applicability for the treatment of type 1 diabetes. Although the subcutaneous space represents an alternate, safe and easily accessible site for pancreatic islet transplantation, lack of neovascularization and the resulting hypoxic cell death have largely limited the longevity of graft survival and function and pose a barrier to the widespread adoption of islet transplantation in the clinic. Here we report the successful subcutaneous transplantation of pancreatic islets admixed with a device-free islet viability matrix, resulting in long-term euglycaemia in diverse immune-competent and immuno-incompetent animal models.

View Article and Find Full Text PDF

Preeclampsia is the most common placental pathology in pregnant females, with increased morbidity and mortality incurred on the mother and the fetus. There is a need for improved biomarkers for diagnosis and monitoring of this condition. Placental syncytiotrophoblasts at the maternal-fetal interface release nanoparticles, including extracellular microvesicles, into the maternal blood during pregnancy.

View Article and Find Full Text PDF

The stem cell field is hindered by its inability to noninvasively monitor transplanted cells within the target organ in a repeatable, time-sensitive, and condition-specific manner. We hypothesized that quantifying and characterizing transplanted cell-derived exosomes in the recipient plasma would enable reliable, noninvasive surveillance of the conditional activity of the transplanted cells. To test this hypothesis, we used a human-into-rat xenogeneic myocardial infarction model comparing two well-studied progenitor cell types: cardiosphere-derived cells (CDCs) and c-kit cardiac progenitor cells (CPCs), both derived from the right atrial appendage of adults undergoing cardiopulmonary bypass.

View Article and Find Full Text PDF

Islet cell transplantation is curative therapy for patients with complicated autoimmune type 1 diabetes (T1D). We report the diagnostic potential of circulating transplant islet-specific exosomes to noninvasively distinguish pancreatic β cell injury secondary to recurrent autoimmunity vs immunologic rejection. A T1D patient with hypoglycemic unawareness underwent islet transplantation and maintained normoglycemia until posttransplant day 1098 before requiring exogenous insulin.

View Article and Find Full Text PDF

Objective: In heart transplantation, there is a critical need for development of biomarkers to noninvasively monitor cardiac allografts for immunologic rejection or injury. Exosomes are tissue-specific nanovesicles released into circulation by many cell types. Their profiles are dynamic, reflecting conditional changes imposed on their tissue counterparts.

View Article and Find Full Text PDF

In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation.

View Article and Find Full Text PDF

Background: Extracellular microvesicles (EVs) are being increasingly studied for their diagnostic potential. We investigated the feasibility of studying the kinetics and tissue-specific profiles of pulmonary EVs in the context of ex vivo lung perfusion (EVLP) used for salvaging marginal lungs for transplantation.

Methods: Perfusate from six marginal donor lungs placed on EVLP was collected at the following time points: 0, 10, and 60 minutes after and after perfusate exchange with Steen Solution; 120 and 180 minutes.

View Article and Find Full Text PDF

Loss-of-function in the Parkin protein is thought to play a part in causing neuronal cell death in patients with Parkinson's disease. This study explores the effect of Parkin degradation, via the overexpression of nucleus accumbens 1 (NAC1), on cell viability. It was found that NAC1 and Parkin are co-localized within the cell and interact with one another, leading to a decrease in Parkin levels.

View Article and Find Full Text PDF

Protein degradation is a critical component of cellular maintenance. The intracellular translocation and targeting of the Ubiquitin Proteasome System (UPS) differentially coordinates a protein's half-life and thereby its function. Nucleus Accumbens 1 (NAC1), a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex (POZ/BTB) family of proteins, participates in the coordinated proteolysis of synaptic proteins by mediating recruitment of the UPS to dendritic spines.

View Article and Find Full Text PDF
Article Synopsis
  • NAC1 is identified as a corepressor for various POZ/BTB transcriptional repressor proteins, affecting gene regulation in both neuronal and non-neuronal cells.
  • In experiments, NAC1 showed the ability to reverse transcriptional inhibition caused by multiple Gal4 fusion proteins, indicating its role in modulating transcriptional activity.
  • The study also revealed that NAC1 selectively interacts with other POZ/BTB proteins, confirming its involvement in protein-protein interactions, particularly in central nervous system tissues.
View Article and Find Full Text PDF

Coordinated proteolysis of synaptic proteins is required for synaptic plasticity, but a mechanism for recruiting the ubiquitin-proteasome system (UPS) into dendritic spines is not known. NAC1 is a cocaine-regulated transcriptional protein that was found to complex with proteins in the UPS, including cullins and Mov34. NAC1 and the proteasome were cotranslocated from the nucleus into dendritic spines in cortical neurons in response to proteasome inhibition or disinhibiting synaptic activity with bicuculline.

View Article and Find Full Text PDF

In this report, CoREST was identified as a protein that interacts with NAC1. NAC1 is a cocaine-regulated Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex (POZ/BTB) repressor protein, which mediates interactions among several other transcriptional regulators. In the present study, an interaction between NAC1 and CoREST was detected in neuro-2A cells and HEK293T cells.

View Article and Find Full Text PDF
Article Synopsis
  • NAC1 expression increases in the nucleus accumbens of rats after cocaine withdrawal, suggesting it serves as a compensatory mechanism against cocaine's effects.
  • Studies show NAC1 behaves as a transcriptional regulator but is also found diffusely in the cytoplasm of neural cells, not just the nucleus.
  • Phosphorylation of a specific residue by PKC is crucial for this diffuse expression, hinting at a possible non-transcriptional role for NAC1 in brain function.
View Article and Find Full Text PDF

NAC1 is a cocaine-regulated POZ/BTB (Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex) protein. NAC1 is increased by cocaine selectively in the nucleus accumbens, a CNS region important for drug addiction. NAC1's role in the cell, however, is not known.

View Article and Find Full Text PDF

NAC1 cDNA was identified as a novel transcript induced in the nucleus accumbens from rats chronically treated with cocaine. NAC1 is a member of the Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger family of transcription factors and has been shown by overexpression studies to prevent the development of behavioral sensitization resulting from repeated cocaine treatment. This paper reports the cloning and characterization of the corresponding gene.

View Article and Find Full Text PDF

POZ/BTB proteins influence cellular development and in some examples act as oncoproteins. However, several POZ/BTB transcription factors have been found in terminally differentiated neurons, where their functions remain unknown. One example is NAC1, a constitutively-expressed protein that can regulate behaviors associated with cocaine use.

View Article and Find Full Text PDF

BTB/POZ proteins can influence the cell cycle and contribute to oncogenesis. Many family members are present in the mammalian CNS. Previous work demonstrated elevated NAC1 mRNA levels in the rat nucleus accumbens in response to cocaine.

View Article and Find Full Text PDF

Levels of the mRNA NAC-1 are increased in the rat forebrain weeks after cocaine exposure. This long-term neuroadaptation occurs during the expression of behavioral sensitization, a model of psychostimulant-induced paranoia. NAC-1, the protein encoded by this cocaine-regulated mRNA, contains a Pox virus and zinc finger/bric-a-brac tramtrack broad complex (POZ/BTB) motif, which mediates interactions among several transcriptional regulators.

View Article and Find Full Text PDF