Background: Cancer therapy-related cardiovascular toxicity (CTR-CVT) from immune checkpoint inhibitor (ICI) therapy is still incompletely characterized, and patients with pre-existing cardiovascular disease represent a particularly high-risk cohort. Valid parameters for risk stratification of these patients are missing. Neutrophil-to-lymphocyte ratio (NLR) has been shown to predict mortality and adverse events in other cardiovascular cohorts.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
October 2023
Cancer survival rates have increased significantly because of improvements in therapy regimes and novel immunomodulatory drugs. Recently, combination therapies of anthracyclines and immune checkpoint inhibitors (ICIs) have been proposed to maximize neoplastic cell removal. However, it has been speculated that a priori anthracycline exposure may prone the heart vulnerable to increased toxicity from subsequent ICI therapy, such as an anti-programmed cell death protein 1 (PD1) inhibitor.
View Article and Find Full Text PDFThe programmed cell death protein 1 (PD1) immune checkpoint prevents inflammatory tissue damage by inhibiting immune reactions. Understanding the relevance of cardiac PD1 signaling may provide new insights into the inflammatory events under baseline conditions and disease. Here, we demonstrate distinct immunological changes upon PD1 deficiency in healthy hearts and during reperfused acute myocardial infarction (repAMI).
View Article and Find Full Text PDFAims: Cardiac immune-related adverse events (irAEs) from immune checkpoint inhibition (ICI) targeting programmed death 1 (PD1) are of growing concern. Once cardiac irAEs become clinically manifest, fatality rates are high. Cardio-oncology aims to prevent detrimental effects before manifestation of severe complications by targeting early pathological changes.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is challenging the care for cardiovascular patients, resulting in serious consequences with increasing mortality in pre-diseased heart failure patients. In the current state of the pandemic, the physiopathology of COVID-19 affecting pre-diseased hearts and the management of terminal heart failure in COVID-19 patients remain unclear. We outline the findings of a young COVID-19 patient suffering from idiopathic cardiomyopathy who was treated for acute multi-organ failure and required cardiac surgery with implantation of a temporary right ventricular and durable left ventricular assist device (LVAD).
View Article and Find Full Text PDFAims: Childhood cancer therapy is associated with a significant risk of therapy-related cardiotoxicity. This meta-analysis aims to evaluate cardiac biomarkers for the detection of cancer therapy-related left ventricular (LV) dysfunction in childhood cancer patients.
Methods And Results: PubMed, Cochrane Library, Wiley Library, and Web of Science were screened for studies investigating brain natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) or cardiac troponin in childhood cancer patients.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCardioprotection by salvage of the infarct-affected myocardium is an unmet yet highly desired therapeutic goal. To develop new dedicated therapies, experimental myocardial ischemia/reperfusion (I/R) injury would require methods to simultaneously characterize extent and localization of the damage and the ensuing inflammatory responses in whole hearts over time. Here we present a three-dimensional (3D), simultaneous quantitative investigation of key I/R injury-components by combining bleaching-augmented solvent-based non-toxic clearing (BALANCE) using ethyl cinnamate (ECi) with light sheet fluorescence microscopy.
View Article and Find Full Text PDFBackground: Myocardial infarction remains the single leading cause of death worldwide. Upon reperfusion of occluded arteries, deleterious cellular mediators particularly located at the mitochondria level can be activated, thus limiting the outcome in patients. This may lead to the so-called ischemia/reperfusion (I/R) injury.
View Article and Find Full Text PDF