Publications by authors named "Korsching S"

The parthenogenetic life cycle of the stick insect Medauroidea extradentata offers unique advantages for the generation of genome-edited strains, as an isogenic and stable mutant line can in principle be achieved already in the first generation (G0). However, genetic tools for the manipulation of their genes had not been developed until now. Here, we successfully implement CRISPR/Cas9 as a technique to modify the genome of the stick insect M.

View Article and Find Full Text PDF

Cartilaginous fishes (chondrichthyans: chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures.

View Article and Find Full Text PDF

Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures.

View Article and Find Full Text PDF

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans).

View Article and Find Full Text PDF

The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of polyamines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated receptors, generally assumed to be responsible for detecting amines.

View Article and Find Full Text PDF

Many animal and plant species synthesize toxic compounds as deterrent; thus, detection of these compounds is of vital importance to avoid their ingestion. Often, such compounds are recognized by taste 2 receptors that mediate bitter taste in humans. Until now, bitter taste receptors have only been found in bony vertebrates, where they occur as a large family already in coelacanth, a "living fossil" and the earliest-diverging extant lobe-finned fish.

View Article and Find Full Text PDF

Despite the important role of bitter taste for the rejection of potentially harmful food sources, birds have long been suspected to exhibit inferior bitter tasting abilities. Although more recent reports on the bitter recognition spectra of several bird species have cast doubt about the validity of this assumption, the bitter taste of avian species is still an understudied field. Previously, we reported the bitter activation profiles of three zebra finch receptors Tas2r5, -r6, and -r7, which represent orthologs of a single chicken bitter taste receptor, Tas2r1.

View Article and Find Full Text PDF

The senses of taste and smell detect overlapping sets of chemical compounds in fish, e.g. amino acids are detected by both senses.

View Article and Find Full Text PDF

Cartilaginous fishes are renowned for a keen sense of smell, a reputation based on behavioral observations and supported by the presence of large and morphologically complex olfactory organs. At the molecular level, genes belonging to the four families coding for most olfactory chemosensory receptors in other vertebrates have been identified in a chimera and a shark, but it was unknown whether they actually code for olfactory receptors in these species. Here, we describe the evolutionary dynamics of these gene families in cartilaginous fishes using genomes of a chimera, a skate, a sawfish, and eight sharks.

View Article and Find Full Text PDF

During their maturation from horizontal basal stem cells, olfactory sensory neurons (OSNs) are known to select exactly one out of hundreds of olfactory receptors (ORs) and express it on their surface, a process called monogenic selection. Monogenic expression is preceded by a multigenic phase during which several OR genes are expressed in a single OSN. Here, we perform pseudotime analysis of a single cell RNA-Seq dataset of murine olfactory epithelium to precisely align the multigenic and monogenic expression phases with the cell types occurring during OSN differentiation.

View Article and Find Full Text PDF

The vertebrate sense of smell employs four main receptor families for detection of odors, among them the V1R/ORA family, which is unusually small and highly conserved in teleost fish. Zebrafish possess just seven ORA receptors, enabling a comprehensive analysis of the expression patterns of the entire family. The olfactory organ of zebrafish is representative for teleosts, cup-shaped, with lamella covered with sensory epithelium protruding into the cup from a median raphe.

View Article and Find Full Text PDF

The sense of smell employs some of the largest gene families in the genome to detect and distinguish a multitude of different odors. Within vertebrates, 4 major olfactory receptor families have been described; of which, only 3 (OR, TAAR-like, and V1R) were found already in lamprey, a jawless vertebrate. The forth family (V2R) was believed to have originated later, in jawed vertebrates.

View Article and Find Full Text PDF

Nucleotides are an important class of odorants for aquatic vertebrates such as frogs and fishes, but also have manifold signaling roles in other cellular processes. Recently, an adenosine receptor believed to belong to the adora2 clade has been identified as an olfactory receptor in zebrafish. Here, we set out to elucidate the evolutionary history of both this gene and its olfactory function.

View Article and Find Full Text PDF

Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish.

View Article and Find Full Text PDF

In the best studied cases ( feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in , excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators.

View Article and Find Full Text PDF

The careful evaluation of food is important for survival throughout the animal kingdom, and specialized chemoreceptors have evolved to recognize nutrients, minerals, acids, and many toxins. Vertebrate bitter taste, mediated by the taste receptor type 2 (T2R) family, warns against potentially toxic compounds. During evolution T2R receptors appear first in bony fish, but the functional properties of bony fish T2R receptors are mostly unknown.

View Article and Find Full Text PDF

Dopaminergic neurons in the substantia nigra (SNc) innervate both striatum and the superior colliculus in mammals, as well as its homolog the optic tectum in lampreys, belonging to the oldest group of living vertebrates [1-3]. In the lamprey, we have previously shown that the same neuron sends axonal branches to both striatum and the optic tectum [3]. Here, we show that most neurons in the lamprey SNc and ventral tegmental area (VTA) (also referred to as the nucleus of the posterior tuberculum) express not only tyrosine hydroxylase (TH), in lamprey a marker of dopaminergic neurons [4], but also the vesicular glutamate transporter (vGluT), suggesting that glutamate is a co-transmitter.

View Article and Find Full Text PDF

Throughout the animal kingdom chemical senses are one of the primary means by which organisms make sense of their environment. To achieve perception of complex chemosensory stimuli large repertoires of olfactory and gustatory receptors are employed in bony vertebrates, which are characterized by high evolutionary dynamics in receptor repertoire size and composition. However, little is known about their evolution in earlier diverging vertebrates such as cartilaginous fish, which include sharks, skates, rays, and chimeras.

View Article and Find Full Text PDF

A sensory deficit both at the individual and at the species level can be compensated by increased acuity in other senses. The loss of vision in blind cavefish, Astyanax mexicanus, appears to be partially counterbalanced by enhanced chemosensory perception. Whether such improvement also involves adaptive changes in chemosensory receptor repertoires was unknown.

View Article and Find Full Text PDF

Ligand-gating has recently been proposed as a novel mechanism to regulate olfactory receptor sensitivity. TAAR13c, the zebrafish olfactory receptor activated by the death-associated odor cadaverine, appears to possess an allosteric binding site for cadaverine, which was assumed to block progress of the ligand towards the internal orthosteric binding-and-activation site. Here we have challenged the suggested gating mechanism by modeling the entry tunnel for the ligand as well as the ligand path inside the receptor.

View Article and Find Full Text PDF

Background: The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals.

View Article and Find Full Text PDF

The death-associated odor cadaverine, generated by bacteria-mediated decarboxylation of lysine, has been described as the principal activator of a particular olfactory receptor in zebrafish, TAAR13c. Low concentrations of cadaverine activated mainly TAAR13c-expressing olfactory sensory neurons, suggesting TAAR13c as an important element of the neuronal processing pathway linking cadaverine stimulation to a strongly aversive innate behavioral response. Here, we characterized the initial steps of this neuronal pathway.

View Article and Find Full Text PDF

All olfactory receptors identified in teleost fish are expressed in a single sensory surface, whereas mammalian olfactory receptor gene families segregate into different olfactory organs, chief among them the main olfactory epithelium expressing ORs and TAARs, and the vomeronasal organ expressing V1Rs and V2Rs. A transitional stage is embodied by amphibians, with their vomeronasal organ expressing more 'modern', later diverging V2Rs, whereas more 'ancient', earlier diverging V2Rs are expressed in the main olfactory epithelium. During metamorphosis, the main olfactory epithelium of Xenopus tadpoles transforms into an air-filled cavity (principal cavity, air nose), whereas a newly formed cavity (middle cavity) takes over the function of a water nose.

View Article and Find Full Text PDF

Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors.

View Article and Find Full Text PDF

Background: Chemical senses serve a multitude of essential functions across the animal kingdom. Vertebrates employ four GPCR families to detect odors, among them the v1r/ora gene family. The V1R family is known to evolve rapidly in the lobe-finned lineage giving rise to tetrapods, but the homologous ORA family consists of just six highly conserved genes in teleost fish, with direct orthologs in the lobe-finned fish coelacanth.

View Article and Find Full Text PDF