Introduction: Pulmonary capillary endothelium-bound (PCEB) angiotensin-converting enzyme (ACE) activity is a direct and quantifiable index of pulmonary endothelial function that decreases early in acute respiratory distress syndrome (ARDS) and correlates with its severity. Endothelial dysfunction is a major pathophysiology that underlies sepsis-related ARDS. Recombinant human activated protein C (rhAPC), now withdrawn from the market, has been used in the recent past as an endothelial-protective treatment in patients with septic organ dysfunction.
View Article and Find Full Text PDFThe inflammatory influence and biological markers of prolonged mechanical-ventilation in uninjured human lungs remains controversial. We investigated exhaled nitric oxide (NO) and carbon monoxide (CO) in mechanically-ventilated, brain-injured patients in the absence of lung injury or sepsis at two different levels of positive end-expiratory pressure (PEEP). Exhaled NO and CO were assessed in 27 patients, without lung injury or sepsis, who were ventilated with 8 ml kg(-1) tidal volumes under zero end-expiratory pressure (ZEEP group, n = 12) or 8 cm H2O PEEP (PEEP group, n = 15).
View Article and Find Full Text PDFPulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors' lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of pulmonary endothelial function, in eight brain-dead patients and ten brain-injured mechanically ventilated controls.
View Article and Find Full Text PDFBackground: The inflammatory influence of prolonged mechanical ventilation in uninjured lungs remains a matter of controversy and largely unexplored in humans. The authors investigated pulmonary inflammation by using exhaled breath condensate (EBC) in mechanically ventilated, brain-injured patients in the absence of acute lung injury or sepsis and explored the potential influence of positive end-expiratory pressure (PEEP).
Methods: Inflammatory EBC markers were assessed in 27 mechanically ventilated, brain-injured patients with neither acute lung injury nor sepsis and in 12 healthy and 8 brain-injured control subjects.
Purpose: To determine the inter-relationships between cytokine levels and physiological scores in predicting outcome in unselected, critically ill patients.
Methods: To this end, 127 patients (96 men), having a mean+/-SD age of 45+/-20 years, with a wide range in admission diagnoses (medical, surgical, and multiple trauma patients) were prospectively investigated. Severity of critical illness and organ dysfunction were graded by acute physiology and chronic health evaluation (APACHE II) and sequential organ failure assessment (SOFA) scores, respectively.
Intensive Care Med
September 2004
Background: Pulmonary endothelium is an active organ possessing numerous physiological, immunological, and metabolic functions. These functions may be altered early in acute lung injury (ALI) and further contribute to the development of acute respiratory distress syndrome (ARDS). Pulmonary endothelium is strategically located to filter the entire blood before it enters the systemic circulation; consequently its integrity is essential for the maintenance of adequate homeostasis in both the pulmonary and systemic circulations.
View Article and Find Full Text PDF