Bacteria can inhibit the growth of other bacteria by injecting effectors using a type VI secretion system (T6SS). T6SS effectors can also be injected into eukaryotic cells to facilitate bacterial survival, often by targeting the cytoskeleton. Here, we show that the trans-kingdom antimicrobial T6SS effector VgrG4 from Klebsiella pneumoniae triggers the fragmentation of the mitochondrial network.
View Article and Find Full Text PDFis an important cause of multidrug-resistant infections worldwide. Understanding the virulence mechanisms of is a priority and timely to design new therapeutics. Here, we demonstrate that limits the SUMOylation of host proteins in epithelial cells and macrophages (mouse and human) to subvert cell innate immunity.
View Article and Find Full Text PDFKlebsiella pneumoniae is a significant cause of nosocomial pneumonia and an alarming pathogen owing to the recent isolation of multidrug resistant strains. Understanding of immune responses orchestrating K. pneumoniae clearance by the host is of utmost importance.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a chronic inflammatory skin disease characterized by an impaired epidermal barrier, dysregulation of innate and adaptive immunity, and a high susceptibility to bacterial colonization and infection. In the present study, bacterial biofilm was visualized by electron microscopy at the surface of AD skin. Correspondingly, Staphylococcus aureus (S.
View Article and Find Full Text PDFTannerella forsythia is a gram-negative bacterium strongly associated with the development and/or progression of periodontal disease. Here, we have shown that a newly characterized matrix metalloprotease-like enzyme, referred to as karilysin, efficiently cleaved the antimicrobial peptide LL-37, significantly reducing its bactericidal activity. This may contribute to the resistance of T.
View Article and Find Full Text PDF