Introduction: The prevalence of heart failure with preserved ejection fraction (HFpEF) is continuously rising and predominantly affects older women often hypertensive and/or obese or diabetic. Indeed, there is evidence on sex differences in the development of HF. Hence, we studied cardiovascular performance dependent on sex and age as well as pathomechanisms on a cellular and molecular level.
View Article and Find Full Text PDFProtein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress.
View Article and Find Full Text PDFIntroduction: The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e.
View Article and Find Full Text PDFHuman wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a complex myocardial disorder with no well-established disease-modifying therapy so far. Our study aimed to investigate how autophagy, oxidative stress, inflammation, stress signalling pathways, and apoptosis are hallmark of HCM and their contribution to the cardiac dysfunction. Demembranated cardiomyocytes from patients with HCM display increased titin-based stiffness (F), which was corrected upon antioxidant treatment.
View Article and Find Full Text PDFOxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation.
View Article and Find Full Text PDFAims: Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF).
Methods: Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (F) was determined in rats and human myocardium biopsies before and after acute treatment.
The giant protein titin performs structure-preserving functions in the sarcomere and is important for the passive stiffness (F) of cardiomyocytes. Protein kinase D (PKD) enzymes play crucial roles in regulating myocardial contraction, hypertrophy, and remodeling. PKD phosphorylates myofilament proteins, but it is not known whether the giant protein titin is also a PKD substrate.
View Article and Find Full Text PDFAims: In contrast to the membrane bound adenylyl cyclases, the soluble adenylyl cyclase (sAC) is activated by bicarbonate and divalent ions including calcium. sAC is located in the cytosol, nuclei and mitochondria of several tissues including cardiac muscle. However, its role in cardiac pathology is poorly understood.
View Article and Find Full Text PDFAims: The region-specific mechanical function of left ventricular (LV) murine cardiomyocytes and the role of phosphorylation and oxidative modifications of myofilament proteins were investigated in the process of post-myocardial infarction (MI) remodelling 10 weeks after ligation of the left anterior descending (LAD) coronary artery.
Methods And Results: Permeabilized murine cardiomyocytes from the remaining anterior and a remote non-infarcted inferior LV area were compared with those of non-infarcted age-matched controls. Myofilament phosphorylation, sulfhydryl (SH) oxidation, and carbonylation were also assayed.
Aims: Protein kinase Cα (PKCα) is one of the predominant PKC isoforms that phosphorylate cardiac troponin. PKCα is implicated in heart failure and serves as a potential therapeutic target, however, the exact consequences for contractile function in human myocardium are unclear. This study aimed to investigate the effects of PKCα phosphorylation of cardiac troponin (cTn) on myofilament function in human failing cardiomyocytes and to resolve the potential targets involved.
View Article and Find Full Text PDFEpicardial adipose tissue (EAT) has been implicated in the development of heart disease. Nonetheless, the crosstalk between factors secreted from EAT and cardiomyocytes has not been studied. Here, we examined the effect of factors secreted from EAT on contractile function and insulin signalling in primary rat cardiomocytes.
View Article and Find Full Text PDFProtein kinase A (PKA)-mediated phosphorylation of Ser23/24 of cardiac troponin I (cTnI) causes a reduction in Ca(2+)-sensitivity of force development. This study aimed to determine whether the PKA-induced modulation of the Ca(2+)-sensitivity is solely due to cTnI phosphorylation or depends on the phosphorylation status of other sarcomeric proteins. Endogenous troponin (cTn) complex in donor cardiomyocytes was partially exchanged (up to 66+/-1%) with recombinant unphosphorylated human cTn and in failing cells similar exchange was achieved using PKA-(bis)phosphorylated cTn complex.
View Article and Find Full Text PDFPrevious studies indicated that the increase in protein kinase C (PKC)-mediated myofilament protein phosphorylation observed in failing myocardium might be detrimental for contractile function. This study was designed to reveal and compare the effects of PKCalpha- and PKCepsilon-mediated phosphorylation on myofilament function in human myocardium. Isometric force was measured at different [Ca2+] in single permeabilized cardiomyocytes from failing human left ventricular tissue.
View Article and Find Full Text PDFCardiomyocytes derived from pluripotent embryonic stem cells (ESC) have the advantage of providing a source for standardized cell cultures. However, little is known on the regulation of the genome during differentiation of ESC to cardiomyocytes. Here, we characterize the transcriptome of the mouse ESC line CM7/1 during differentiation into beating cardiomyocytes and compare the gene expression profiles with those from primary adult murine cardiomyocytes and left ventricular myocardium.
View Article and Find Full Text PDFProlonged Ca(2+) stimulations often result in a decrease in contractile force of isolated, demembranated human ventricular cardiomyocytes, whereas intact cells are likely to be protected from this deterioration. We hypothesized that cytosolic protein kinase C (PKC) contributes to this protection. Prolonged contracture (10 min) of demembranated human cardiomyocytes at half-maximal Ca(2+) resulted in a 37 +/- 5% reduction of active force (p < 0.
View Article and Find Full Text PDFThe R145G amino acid exchange in the inhibitory subunit (cTnI) of cardiac troponin, which regulates muscle contraction, is related to familial hypertrophic cardiomyopathy. Information on its impact on contractility of adult cardiomyocytes is scarce. We studied shortening of adult rat cardiomyocytes before and during ss-adrenergic stimulation using adenovirus-driven expression of human cTnI-wild type (wt) and cTnI-R145G.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
October 2007
We have expressed alpha & beta isoforms of mammalian striated muscle tropomyosin (Tm) and alpha-Tm carrying the D175N or E180G cardiomyopathy mutations. In each case the Tm carries an Ala-Ser N-terminal extension to mimic the acetylation of the native Tm. We show that these Ala-Ser modified proteins are good analogues of the native Tm in the assays used here.
View Article and Find Full Text PDFThe binding sites for actin depolymerising factor (ADF) and cofilin on G-actin have been mapped by competitive chemical cross-linking using deoxyribonuclease I (DNase I), gelsolin segment 1 (G1), thymosin beta4 (Tbeta4), and vitamin D-binding protein (DbP). To reduce ADF/cofilin induced actin oligomerisation we used ADP-ribosylated actin. Both vitamin D-binding protein and thymosin beta4 inhibit binding by ADF or cofilin, while cofilin or ADF and DNase I bind simultaneously.
View Article and Find Full Text PDFThe specific and selective proteolysis of cardiac troponin I (cTnI) has been proposed to play a key role in human ischemic myocardial disease, including stunning and acute pressure overload. In this study, the functional implications of cTnI proteolysis were investigated in human cardiac tissue for the first time. The predominant human cTnI degradation product (cTnI(1-192)) and full-length cTnI were expressed in Escherichia coli, purified, reconstituted with the other cardiac troponin subunits, troponin T and C, and subsequently exchanged into human cardiac myofibrils and permeabilized cardiomyocytes isolated from healthy donor hearts.
View Article and Find Full Text PDF