Catalytic studies aim to design new catalysts to eliminate unwanted by-products and obtain 100 % selectivity for the preferred target product without losing activity. For this purpose, understanding the role of each component building up the catalyst is essential. However, determining the intrinsic catalytic activity of pure metals, especially precious metals in the CO hydrogenation reaction under ambient conditions is complex.
View Article and Find Full Text PDFDifferent Co contents were used to tune bimetallic Pt-Co nanoparticles with a diameter of 8 nm, resulting in Pt:Co ratios of 3.54, 1.51, and 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2024
The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface-induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA-15 catalyst with >99 % CO selectivity.
View Article and Find Full Text PDFN-doped carbon (N-C) materials are increasingly popular in different electrochemical and catalytic applications. Due to the structural and stoichiometric diversity of these materials, however, the role of different functional moieties is still controversial. We have synthesized a set of N-C catalysts, with identical morphologies (∼27 nm pore size).
View Article and Find Full Text PDFIn this work, we have synthesized composites of BiOCl with carbon nanotubes (CNTs) a hydrothermal method. Different compositions of CNTs were used to study their influence on the physicochemical properties of BiOCl. Based on the interesting results obtained, various significant correlations were made.
View Article and Find Full Text PDFThe synthesis of the copper-poor and aluminum-rich layered double hydroxides (LDHs) of the CuAl type was optimized in detail in this work, by applying an intense mechanochemical treatment to activate the gibbsite starting reagent. The phase-pure forms of these LDHs were prepared for the first time; using copper nitrate and perchlorate salts during the syntheses turned out to be the key to avoiding the formation of copper hydroxide sideproducts. Based on the use of the optimized syntheses parameters, the preparation of layered triple and multiple hydroxides was also attempted using Ni(II), Co(II), Zn(II) and even Mg(II) ions.
View Article and Find Full Text PDFIn the present work, shape tailored CuO microparticles were synthesized by changing the nature of the reducing agent and studied subsequently. d-(+)-glucose, d-(+)-fructose, d-(+)xylose, d-(+)-galactose, and d-(+)-arabinose were chosen as reducing agents due to their different reducing abilities. The morpho-structural characteristics were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS), while their photocatalytic activity was evaluated by methyl orange degradation under visible light (120 min).
View Article and Find Full Text PDFTitanium dioxide-carbon sphere (TiO-CS) composites were constructed via using prefabricated carbon spheres as templates. By the removal of template from the TiO-CS, TiO hollow structures (HS) were synthesized. The CS templates were prepared by the hydrothermal treatment of ordinary table sugar (sucrose).
View Article and Find Full Text PDFIn this paper, we study the thermal activation of CO₂ on the surface of small Au nanoparticles supported on TiO₂ and titanate nanotube. We characterize the catalysts with high resolution transmission electron microscopy (HR-TEM) and total gold content measurement. We performed catalytic test in flow reactors then we investigate the surface of the catalysts during the adsorption and reaction processes by diffuse reflectance infrared spectroscopy (DRIFTS).
View Article and Find Full Text PDFThe effects of reduction by H2 and by heat treatment in vacuum and in O2 flow on Rh particle size changes of Rh/CeO2 samples were studied by X-ray photoelectron spectroscopy (XPS), high-resolution electron microscopy (HRTEM), and CO adsorption followed by diffuse reflectance infrared spectroscopy (DRIFTS). Low-temperature (373-423 K) reduction of Rh without agglomeration is demonstrated. An average particle size of 2.
View Article and Find Full Text PDF