Inotuzumab Ozogamicin (InO) is an antibody-calicheamicin conjugate with striking efficacy in B-cell acute lymphoblastic leukemia (B-ALL). However, there is wide inter-patient variability in treatment response, and the genetic basis of this variation remains largely unknown. Using a genome-wide CRISPR screen, we discovered the loss of DNTT as a primary driver of InO resistance.
View Article and Find Full Text PDFBackground: The 5-year overall survival (OS) rates of T-cell lymphocytic leukemia (T-ALL) are better for children (>90%) compared to adults (~57%). The early T-cell precursor (ETP) T-ALL subtype is prognostically unfavorable in adults, but less significant in pediatric T-ALL, and the diagnosis and prognosis of "near"-ETP is controversial. We compared protein and RNA expression patterns in pediatric and adult T-ALL to identify prognostic subgroups, and to further characterize ETP and near-ETP T-ALL in both age groups.
View Article and Find Full Text PDFBackground: All-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combinations have produced excellent outcomes in patients with standard-risk acute promyelocytic leukemia (APL). Herein, the authors update their long-term results with the regimen of ATO-ATRA and gemtuzumab ozogamicin (GO) in standard-risk and high-risk APL.
Methods: This was a phase 2 trial of patients with newly diagnosed APL.
Malignancies are reliant on glutamine as an energy source and a facilitator of aberrant DNA methylation. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective glutaminase inhibitor, combined with azacytidine (AZA), followed by a single-arm, open-label, phase 1b/2 study in persons with advanced myelodysplastic syndrome (MDS). The dual primary endpoints evaluated clinical activity, safety and tolerability; secondary endpoints evaluated pharmacokinetics, pharmacodynamics, overall survival, event-free survival and duration of response.
View Article and Find Full Text PDFUnlabelled: Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that continues to have poor prognosis despite recent therapeutic advances. Venetoclax (Ven), a BCL2-inhibitor has shown a high response rate in AML; however, relapse is invariable due to mitochondrial dysregulation that includes upregulation of the antiapoptotic protein MCL1, a central mechanism of Ven resistance (Ven-res). We have previously demonstrated that the transcription factor STAT3 is upregulated in AML hematopoietic stem and progenitor cells (HSPCs) and can be effectively targeted to induce apoptosis of these aberrant cells.
View Article and Find Full Text PDFPatients with leukemia experience profound immunosuppression both from their underlying disease as well as chemotherapeutic treatment. Little is known about the prevalence and clinical presentation of nontuberculous mycobacteria (NTM) in this patient population. We identified six cases of NTM infection from 29,743 leukemia patients who had acid-fast bacilli (AFB) cultures.
View Article and Find Full Text PDFPurpose: Acute lymphoblastic leukemia (ALL) can occur across all age groups, with a strikingly higher cure rate in children compared with adults. However, the pharmacological basis of age-related differences in ALL treatment response remains unclear.
Methods: Studying 767 children and 309 adults with newly diagnosed B-cell ALL enrolled on frontline trials at St Jude Children's Research Hospital, MD Anderson Cancer Center, the Alliance for Clinical Trials in Oncology, and the ECOG-ACRIN Cancer Research Group, we determined the ex vivo sensitivity of leukemia cells to 21 drugs.
Asparaginase-based therapy is a cornerstone in acute lymphoblastic leukemia (ALL) treatment, capitalizing on the methylation status of the asparagine synthetase (ASNS) gene, which renders ALL cells reliant on extracellular asparagine. Contrastingly, ASNS expression in acute myeloid leukemia (AML) has not been thoroughly investigated, despite studies suggesting that AML with chromosome 7/7q deletions might have reduced ASNS levels. Here, we leverage reverse phase protein arrays to measure ASNS expression in 810 AML patients and assess its impact on outcomes.
View Article and Find Full Text PDFDefining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively.
View Article and Find Full Text PDFThe addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array.
View Article and Find Full Text PDFB cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL.
View Article and Find Full Text PDFPurpose: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease.
Methods: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing.
In TP53 wild-type acute myeloid leukemia (AML), inhibition of MDM2 can enhance p53 protein expression and potentiate leukemic cell apoptosis. MDM2 inhibitor (MDM2i) monotherapy in AML has shown modest responses in clinical trials but combining options of MDM2i with other potent AML-directed agents like cytarabine and venetoclax could improve its efficacy. We conducted a phase I clinical trial (NCT03634228) to study the safety and efficacy of milademetan (an MDM2i) with low-dose cytarabine (LDAC)±venetoclax in adult patients with relapsed refractory (R/R) or newly diagnosed (ND; unfit) TP53 wild-type AML and performed comprehensive CyTOF analyses to interrogate multiple signaling pathways, the p53-MDM2 axis and the interplay between pro/anti-apoptotic molecules to identify factors that determine response and resistance to therapy.
View Article and Find Full Text PDFPurpose: The endoplasmic reticulum (ER) is the major site of protein synthesis and folding in the cell. ER-associated degradation (ERAD) and unfolded protein response (UPR) are the main mechanisms of ER-mediated cell stress adaptation. Targeting the cell stress response is a promising therapeutic approach in acute myeloid leukemia (AML).
View Article and Find Full Text PDFReverse transcription polymerase chain reaction (RT-PCR) for BCR::ABL1 is the most common and widely accepted method of measurable residual disease (MRD) assessment in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL); however, RT-PCR may not be an optimal measure of MRD in many cases of Ph+ ALL. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay (sensitivity of 10 ) and its correlation with RT-PCR for BCR::ABL1 in patients with Ph+ ALL. Overall, 32% of patients had a discordance between MRD assessment by RT-PCR and NGS, and 31% of patients who achieved NGS MRD negativity were PCR+ at the same timepoint.
View Article and Find Full Text PDFTP53-mutant acute myeloid leukemia (AML) respond poorly to currently available treatments, including venetoclax-based drug combinations and pose a major therapeutic challenge. Analyses of RNA sequencing and reverse phase protein array datasets revealed significantly lower BAX RNA and protein levels in TP53-mutant compared to TP53-wild-type (WT) AML, a finding confirmed in isogenic CRISPR-generated TP53-knockout and -mutant AML. The response to either BCL-2 (venetoclax) or MCL-1 (AMG176) inhibition was BAX-dependent and much reduced in TP53-mutant compared to TP53-WT cells, while the combination of two BH3 mimetics effectively activated BAX, circumventing survival mechanisms in cells treated with either BH3 mimetic, and synergistically induced cell death in TP53-mutant AML and stem/progenitor cells.
View Article and Find Full Text PDFBromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines.
View Article and Find Full Text PDFUpon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear.
View Article and Find Full Text PDF