Publications by authors named "Korkko J"

Article Synopsis
  • Intellectual disability (ID) covers a broad range, with mild cases being part of the general intelligence distribution and severe cases often linked to specific genetic disorders.
  • A study of a large cohort in Northern Finland revealed that while a small percentage of mild ID is due to Finnish-enriched recessive variants, dominant variants have a more significant role in both mild and severe cases.
  • Analysis showed that both rare and common genetic variants contribute to ID, with their combined effects being more predictive of ID status than each type alone.
View Article and Find Full Text PDF

Purpose: FINCA disease (Fibrosis, Neurodegeneration and Cerebral Angiomatosis, OMIM 618278) is an infantile-onset neurodevelopmental and multiorgan disease. Since our initial report in 2018, additional patients have been described. FINCA is the first human disease caused by recessive variants in the highly conserved gene.

View Article and Find Full Text PDF

Biallelic loss-of-function variants in the SMG9 gene, encoding a regulatory subunit of the mRNA nonsense-mediated decay (NMD) machinery, are reported to cause heart and brain malformation syndrome. Here we report five patients from three unrelated families with intellectual disability (ID) and a novel pathogenic SMG9 c.551 T > C p.

View Article and Find Full Text PDF

Intellectual disability (ID), megalencephaly, frontal predominant pachygyria, and seizures, previously called "thin" lissencephaly, are reported to be caused by recessive variants in CRADD. Among five families of different ethnicities identified, one homozygous missense variant, c.509G>A p.

View Article and Find Full Text PDF

The contribution of de novo variants in severe intellectual disability (ID) has been extensively studied whereas the genetics of mild ID has been less characterized. To elucidate the genetics of milder ID we studied 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. Using exome sequencing, we show that rare damaging variants in known ID genes are observed significantly more often in severe (27%) than in mild ID (13%) patients.

View Article and Find Full Text PDF

There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD.

View Article and Find Full Text PDF

By analyzing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls and 1,077 trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in SETD1A and risk for schizophrenia (P = 3.3 × 10(-9)). We found only two heterozygous LoF variants in 45,376 exomes from individuals without a neuropsychiatric diagnosis, indicating that SETD1A is substantially depleted of LoF variants in the general population.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proalpha1(I) and proalpha2(I) chains, respectively) that result in OI.

View Article and Find Full Text PDF

Osteoporosis is a common condition characterized by reduced skeletal strength and increased susceptibility to fracture. The single major risk factor for osteoporosis is low bone mineral density (BMD) and strong evidence exists that genetic factors are in part responsible for an individual's BMD. A cohort of 40 multiplex Caucasian families selected through a proband with osteoporosis was genotyped for microsatellite markers spaced at an average of 10 cM, and linkage to femoral neck (FN), lumbar spine (LS) and trochanter (TR) BMD was analyzed using univariate and bivariate variance component linkage analysis.

View Article and Find Full Text PDF

Objective: To define the clinical, radiologic, and molecular genetic characteristics of a family with early progressive osteoarthritis mimicking childhood rheumatoid arthritis, Scheuermann-like changes of the spine, tall stature, short 3 and 4 metatarsals, and moderate sensorineural hearing loss.

Methods: We describe a 22-year-old woman and her 54-year-old mother with early progressive osteoarthritis mimicking childhood rheumatoid arthritis. The index case, her mother, and 3 other family members underwent a physical examination, anthropometric measurements, and radiologic studies.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is caused by mutations in COL1A1 and COL1A2 that code for the alpha1 and alpha2 chains of type I collagen. Phenotypes correlate with the mutation types in that COL1A1 null mutations lead to OI type I, and structural mutations in alpha1(I) or alpha2(I) lead to more severe OI types (II-IV). However, correlative analysis between mutation types and OI associated hearing loss has not been previously performed.

View Article and Find Full Text PDF

Patients with pseudohypoparathyroidism type Ib (PHP-Ib) have hypocalcemia and hyperphosphatemia due to renal parathyroid hormone (PTH) resistance, but lack physical features of Albright hereditary osteodystrophy. PHP-Ib is thus distinct from PHP-Ia, which is caused by mutations in the GNAS exons encoding the G protein alpha subunit. However, an imprinted autosomal dominant form of PHP-Ib (AD-PHP-Ib) has been mapped to a region of chromosome 20q13.

View Article and Find Full Text PDF

Purpose: To report posterior chorioretinal atrophy (PCRA) and correlate the vitreous phenotype with inheritance of the disease mutation in a family with vitreoretinal dystrophy.

Design: Prospective observational case series.

Methods: Twenty-four members of a family with 14 affected individuals were examined, and genetic linkage analysis was performed at the COL2A1, COL11A1, and Wagner disease loci.

View Article and Find Full Text PDF

Purpose: To identify the genetic defect and present the ocular and extraocular findings in a large pedigree of predominantly ocular Stickler syndrome.

Design: Observational case series.

Methods: An eight-generation pedigree with hereditary retinal detachments was retrospectively and prospectively studied.

View Article and Find Full Text PDF

Objective: It has been firmly established that mutations in the gene for fibrillin 1, FBN1, cause Marfan syndrome (MFS). FBN1 mutations can also cause other phenotypes, such as ectopia lentis (EL) and familial isolated thoracic aortic aneurysm and dissection (FAA). When the clinical presentation is typical, diagnosis of MFS is usually easy to make.

View Article and Find Full Text PDF

Pseudoachondroplasia (PSACH) and spondyloepiphyseal dysplasia congenita (SEDC) are autosomal dominant forms of short-limb short stature caused by mutations in genes that encode structural components of the cartilage extracellular matrix. PSACH results from mutations in the cartilage oligomeric matrix protein (COMP) gene, while SEDC is caused by mutations in the gene for type II procollagen (COL2A1). We report a child with a distinct skeletal dysplasia due to the combined phenotypes of PSACH and SEDC.

View Article and Find Full Text PDF

Previous in vitro data on type I collagen self-assembly into fibrils suggested that the amino acid 776-796 region of the alpha1(I) chain is crucial for fibril formation because it serves as the recognition site for the telopeptide of a docking collagen monomer. We used a natural collagen mutation with a deletion of amino acids 766-801 to confirm the importance of this region for collagen fibril formation. The proband has type III osteogenesis imperfecta and is heterozygous for a COL1A1 IVS 41 A(+4) --> C substitution.

View Article and Find Full Text PDF

Type I collagen is the most abundant protein in humans, and it helps to maintain the integrity of many tissues via its interactions with cell surfaces, other extracellular matrix molecules, and growth and differentiation factors. Nearly 50 molecules have been found to interact with type I collagen, and for about half of them, binding sites on this collagen have been elucidated. In addition, over 300 mutations in type I collagen associated with human connective tissue disorders have been described.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) isolated from the bone marrow of adult organisms are capable of differentiating into adipocytes, chondrocytes, myoblasts, osteoblasts, and hematopoiesis-supporting stroma. We recently demonstrated that MSCs also adopt glial cell fates when transplanted into the developing central nervous system and hence can produce tissue elements derived from a separate embryonic layer. Despite these remarkable properties, it has been difficult to establish specific criteria to characterize MSCs.

View Article and Find Full Text PDF

A genotype-phenotype analysis of a three-generation family segregating for an autosomal-dominant osteogenesis imperfecta (OI) variant is reported here. The family was ascertained through the presentation of a proband concerned about discoloration of her teeth, found to be dentinogenesis imperfecta (DGI). Examination of 36 family members identified 15 individuals with DGI.

View Article and Find Full Text PDF

The COL2A1 gene was assayed for mutations in genomic DNA from 12 patients with achondrogenesis type II/hypochondrogenesis. The exons and flanking sequences of the 54 exons in the COL2A1 gene were amplified by a series of specific primers using PCR. The PCR products were scanned for mutations by conformation sensitive gel electrophoresis, and PCR products that generated heteroduplex bands were then sequenced.

View Article and Find Full Text PDF

Stickler and Marshall syndromes are dominantly inherited chondrodysplasias characterized by midfacial hypoplasia, high myopia, and sensorineural-hearing deficit. Since the characteristics of these syndromes overlap, it has been argued whether they are distinct entities or different manifestations of a single syndrome. Several mutations causing Stickler syndrome have been found in the COL2A1 gene, and one mutation causing Stickler syndrome and one causing Marshall syndrome have been detected in the COL11A1 gene.

View Article and Find Full Text PDF

Previously, an assay called conformation sensitive gel electrophoresis (CSGE) was developed for scanning PCR products for the presence of single-base and larger base mismatches in DNA. The assay was based on the assumption that mildly denaturing solvents in an appropriate buffer can accentuate the conformational changes produced by single-base mismatches in double-stranded DNA and thereby increase the differential migration in electrophoretic gels of heteroduplexes and homoduplexes. Here the sensitivity of assays by CSGE was improved by limiting the maximal size of the PCR products to 450 bp and making several changes in the conditions for PAGE.

View Article and Find Full Text PDF

Although >90% of patients with osteogenesis imperfecta (OI) have been estimated to have mutations in the COL1A1 and COL1A2 genes for type I procollagen, mutations have been difficult to detect in all patients with the mildest forms of the disease (i.e., type I).

View Article and Find Full Text PDF