Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics.
View Article and Find Full Text PDFThe Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7.
View Article and Find Full Text PDFConnexins are polytopic domain membrane proteins that form hexameric hemichannels (HCs) which can assemble into gap junction channels (GJCs) at the interface of two neighboring cells. The HCs may be involved in ion and small-molecule transport across the cellular plasma membrane in response to various stimuli. Despite their importance, relatively few structures of connexin HCs are available to date, compared to the structures of the GJCs.
View Article and Find Full Text PDFMembrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.
View Article and Find Full Text PDFMembrane adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. As effector proteins of G protein-coupled receptors and other signaling pathways, ACs receive and amplify signals from the cell surface, translating them into biochemical reactions in the intracellular space and integrating different signaling pathways. Despite their importance in signal transduction and physiology, our knowledge about the structure, function, regulation, and molecular interactions of ACs remains relatively scarce.
View Article and Find Full Text PDFIn myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing.
View Article and Find Full Text PDFGap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now.
View Article and Find Full Text PDFCalmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions.
View Article and Find Full Text PDFOrganic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases.
View Article and Find Full Text PDFadenylyl cyclase (AC) Rv1625c/Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signalling is well established, the function of their transmembrane (TM) regions remains unknown. Here, we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.
View Article and Find Full Text PDFAdenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood.
View Article and Find Full Text PDFActive host cell invasion by the obligate intracellular apicomplexan parasites relies on the formation of a moving junction, which connects parasite and host cell plasma membranes during entry. Invading Toxoplasma gondii tachyzoites secrete their rhoptry content and insert a complex of RON proteins on the cytoplasmic side of the host cell membrane providing an anchor to which the parasite tethers. Here we show that a rhoptry-resident kinase RON13 is a key virulence factor that plays a crucial role in host cell entry.
View Article and Find Full Text PDFCAP1 (Cyclase-Associated Protein 1) is highly conserved in evolution. Originally identified in yeast as a bifunctional protein involved in Ras-adenylyl cyclase and F-actin dynamics regulation, the adenylyl cyclase component seems to be lost in mammalian cells. Prompted by our recent identification of the Ras-like small GTPase Rap1 as a GTP-independent but geranylgeranyl-specific partner for CAP1, we hypothesized that CAP1-Rap1, similar to CAP-Ras-cyclase in yeast, might play a critical role in cAMP dynamics in mammalian cells.
View Article and Find Full Text PDFThe Hedgehog (Hh) signaling pathway controls embryonic development and adult tissue homeostasis in multicellular organisms. In , the pathway is primed by secretion of a dually lipid-modified morphogen, Hh, a process dependent on a membrane-integral protein Dispatched. Although Dispatched is a critical component of the pathway, the structural basis of its activity has, so far, not been described.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2020
The adenylyl cyclases (ACs) catalyze the production of the ubiquitous second messenger, cAMP, which in turns acts on a number of effectors and thus regulates a plethora of cellular functions. As the key enzymes in the highly evolutionarily conserved cAMP pathway, the ACs control the physiology of the cells, tissues, organs and organisms in health and disease. A comprehensive understanding of the specific role of the ACs in these processes of life requires a deep mechanistic understanding of structure and mechanisms of action of these enzymes.
View Article and Find Full Text PDFBiochemical, biophysical, and structural studies of membrane proteins rely on the availability of highly pure and monodisperse membrane protein samples. One of the most powerful methods for isolation of the membrane protein of interest is affinity purification. This methodology typically relies on engineering an affinity tag into the protein of interest and an affinity resin that specifically recognizes the tag, allowing one to purify the target protein in a single step.
View Article and Find Full Text PDFHedgehog signaling is central in embryonic development and tissue regeneration. Disruption of the pathway is linked to genetic diseases and cancer. Binding of the secreted ligand, Sonic hedgehog (ShhN) to its receptor Patched (PTCH1) activates the signaling pathway.
View Article and Find Full Text PDFThe translocator protein TSPO is in an important diagnostic and therapeutic target in a range of pathologies, including neuroinflammation and cancer. Despite the availability of several structures of TSPO homologues, our understanding of the molecular determinants that govern high-affinity interactions of TSPO with its ligands is incomplete. Here, in order to decipher the key structural elements of TSPO responsible for interactions with its ligands, we designed a panel of chimeric proteins mimicking the mammalian substrate binding site grafted onto the backbone of the Rhodobacter sphaeroides TSPO homologue, RsTSPO.
View Article and Find Full Text PDFMembrane-integral adenylyl cyclases (ACs) are key enzymes in mammalian heterotrimeric GTP-binding protein (G protein)-dependent signal transduction, which is important in many cellular processes. Signals received by the G protein-coupled receptors are conveyed to ACs through G proteins to modulate the levels of cellular cyclic adenosine monophosphate (cAMP). Here, we describe the cryo-electron microscopy structure of the bovine membrane AC9 bound to an activated G protein αs subunit at 3.
View Article and Find Full Text PDFThe translocator protein (TSPO) is an 18 kDa polytopic membrane protein of the outer mitochondrial membrane, abundantly present in the steroid-synthesising cells. TSPO has been linked to a number of disorders, and it is recognised as a promising drug target with a range of potential medical applications. Structural and biochemical characterisation of a mammalian TSPO requires expression and purification of the protein of high quality in sufficiently large quantities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
Nucleotidyl cyclases, including membrane-integral and soluble adenylyl and guanylyl cyclases, are central components in a wide range of signaling pathways. These proteins are architecturally diverse, yet many of them share a conserved feature, a helical region that precedes the catalytic cyclase domain. The role of this region in cyclase dimerization has been a subject of debate.
View Article and Find Full Text PDFBtuCD-F is an ABC transporter that mediates cobalamin uptake into Escherichia coli. Early in vivo data suggested that BtuCD-F might also be involved in the uptake of cobinamide, a cobalamin precursor. However, neither was it demonstrated that BtuCD-F indeed transports cobinamide, nor was the structural basis of its recognition known.
View Article and Find Full Text PDF