Publications by authors named "Korinna T Allhoff"

Competitive hierarchies in diverse ecological communities have long been thought to lead to instability and prevent coexistence. However, system stability has never been tested, and the relation between hierarchy and instability has never been explained in complex competition networks parameterised with data from direct observation. Here we test model stability of 30 multispecies bryozoan assemblages, using estimates of energy loss from observed interference competition to parameterise both the inter- and intraspecific interactions in the competition networks.

View Article and Find Full Text PDF

The patterns of diet specialization in food webs determine community structure, stability, and function. While specialists are often thought to evolve due to greater efficiency, generalists should have an advantage in systems with high levels of variability. Here we test the generalist-disturbance hypothesis using a dynamic, evolutionary food web model.

View Article and Find Full Text PDF

Global warming is severely impacting ecosystems and threatening ecosystem services as well as human well-being. While some species face extinction risk, several studies suggest the possibility that fast evolution may allow species to adapt and survive in spite of environmental changes. We assess how such evolutionary rescue extends to multitrophic communities and whether evolution systematically preserves biodiversity under global warming.

View Article and Find Full Text PDF

Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.

View Article and Find Full Text PDF

An important challenge in theoretical ecology is to better predict ecological responses to environmental change, and in particular to spatial changes such as habitat fragmentation. Classical food-web models have focused on purely ecological predictions, without taking adaptation or evolution of species traits into account. We address this issue using an eco-evolutionary model, which is based on body masses and diets as the key traits that determine metabolic rates and trophic interactions.

View Article and Find Full Text PDF

We introduce an evolutionary metacommunity of multitrophic food webs on several habitats coupled by migration. In contrast to previous studies that focus either on evolutionary or on spatial aspects, we include both and investigate the interplay between them. Locally, the species emerge, interact and go extinct according to the rules of the well-known evolutionary food web model proposed by Loeuille and Loreau (2005).

View Article and Find Full Text PDF

Evolutionary foodweb models are used to build food webs by the repeated addition of new species. Population dynamics leads to the extinction or establishment of a newly added species, and possibly to the extinction of other species. The food web structure that emerges after some time is a highly nontrivial result of the evolutionary and dynamical rules.

View Article and Find Full Text PDF