In the experiment, the laser pulse (744 nm, 0.5 mJ, 90 fs) focused into the air gap between the plane electrodes biased by a 10 kV/cm field (DC-biased filament) produced terahertz (THz) radiation. At the selected frequencies of =0.
View Article and Find Full Text PDFBroadband frequency downconversion of a 90 fs 744 nm Ti:sapphire laser pulse into the mid-infrared (IR) was demonstrated via its filamentation-induced self-frequency shift in air and subsequent intra-pulse difference frequency generation in a crystal. The filamentation of the laser pulse in air provided its continuous spectral broadening to the Stokes wing with spectral humps separated by ∼1000 that was appropriate for the laser pulse difference frequency conversion into the mid-IR. The difference frequency emission spectrum spanned from 8.
View Article and Find Full Text PDFPulses at 744 nm with 90 fs duration, 6 mJ energy, and a weakly divergent wavefront propagate for more than 100 m and generate a filament followed by an unprecedently long high intensity (≥1/) light channel. Over a 20 m long sub-section of this channel, the pulse energy is transferred continuously to the infrared wing, forming spectral humps that extend up to 850 nm. From 3D+time carrier-resolved simulations of 100 m pulse propagation, we show that spectral humps indicate the formation of a train of femtosecond pulses appearing at a predictable position in the propagation path.
View Article and Find Full Text PDFSpectral broadening of 0.3 ps 515 nm laser pulse in a highly Raman-active crystal and fused silica demonstrates significantly different behavior with the incident pulse energy. While the broadening in fused silica is fairly symmetric with respect to the pump laser pulse wavelength, the Stokes wing broadening in the crystal is 2 times wider than that of anti-Stokes wing, the former demonstrating a step-like increase with the pulse energy.
View Article and Find Full Text PDFThe influence of plasma channel length on an angular terahertz (THz) radiation distribution is experimentally studied for the channel formed under filamentation of an ultrashort laser pulse. It is shown that the angular distribution of the THz emission depends only on laser intensity in the filament and plasma density of the plasma channel and does not depend on the plasma channel length. A qualitative explanation of the THz emission screening by the filament plasma channel is proposed.
View Article and Find Full Text PDFWith the use of I- and z-scan techniques, the four-photon absorption cross section in a UV fused silica sample has been measured to be σ=(1.0±0.5)×10 cm s at 473 nm.
View Article and Find Full Text PDF