DNA glycosylases of the base excision repair (BER) pathway are front-line defenders in removing compromising modifications of the DNA nucleobases. Aberrantly modified nucleobases mediate genomic mutations and inhibit DNA replication leading to adverse health consequences such as cancer, neurological diseases, and aging. In an effort to develop high-affinity transition state (TS) analogues as chemical biology probes for DNA glycosylases, oligonucleotides containing a propargyl-modified pyrrolidine TS mimic nucleotide were synthesized.
View Article and Find Full Text PDFA growing number of iron-sulfur (Fe-S) cluster cofactors have been identified in DNA repair proteins. MutY and its homologs are base excision repair (BER) glycosylases that prevent mutations associated with the common oxidation product of guanine (G), 8-oxo-7,8-dihydroguanine (OG) by catalyzing adenine (A) base excision from inappropriately formed OG:A mispairs. The finding of an [4Fe-4S] cluster cofactor in MutY, Endonuclease III, and structurally similar BER enzymes was surprising and initially thought to represent an example of a purely structural role for the cofactor.
View Article and Find Full Text PDFDNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair.
View Article and Find Full Text PDF