VX-680, also known as MK-0457, is an ATP-competitive small molecule inhibitor of the Aurora kinases that has entered phase II clinical trials for the treatment of cancer. We have solved the cocrystal structure of AurA/TPX2/VX-680 at 2.3 A resolution.
View Article and Find Full Text PDFCurrent classification systems for protein structure show many inconsistencies both within and between systems. The metafold concept was introduced to identify fold similarities by consensus and thus provide a more unified view of fold space. Using cradle-loop barrels as an example, we propose to use the metafold as the next hierarchical level above the fold, encompassing a group of topologically related folds for which a homologous relationship has been substantiated.
View Article and Find Full Text PDFProteins of the cradle-loop barrel metafold are formed by duplication of a conserved betaalphabeta-element, suggesting a common evolutionary origin from an ancestral group of nucleic acid-binding proteins. The basal fold within this metafold, the RIFT barrel, is also found in a wide range of enzymes, whose homologous relationship with the nucleic acid-binding group is unclear. We have characterized a protein family that is intermediate in sequence and structure between the basal group of cradle-loop barrels and one family of RIFT-barrel enzymes, the riboflavin kinases.
View Article and Find Full Text PDFSerum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine protein kinase of the AGC family which participates in the control of epithelial ion transport and is implicated in proliferation and apoptosis. We report here the 1.9 A crystal structure of the catalytic domain of inactive human SGK1 in complex with AMP-PNP.
View Article and Find Full Text PDFThe Aurora kinases are a family of serine/threonine kinases involved in mitosis. The expression of AurA is ubiquitous and cell cycle regulated. It is overexpressed in many tumor types, including breast, colon, and ovarian.
View Article and Find Full Text PDFThe core of swapped-hairpin and double-psi beta barrels is formed by duplication of a conserved betaalphabeta element, suggesting a common evolutionary origin. The path connecting the two folds is unclear as the two barrels are not interconvertible by a simple topological modification, such as circular permutation. We have identified a protein family whose sequence properties are intermediate to the two folds.
View Article and Find Full Text PDFNon-fimbrial adhesins, such as Yersinia YadA, Moraxella UspA1 and A2, Haemophilus Hia and Hsf, or Bartonella BadA represent an important class of molecules by which pathogenic proteobacteria adhere to their hosts. They form trimeric surface structures with a head-stalk-anchor architecture. Whereas head and stalk domains are diverse and appear (frequently repetitively) in different combinations, the anchor domains are homologous and display the properties of autotransporters.
View Article and Find Full Text PDFAbrB is a key transition-state regulator of Bacillus subtilis. Based on the conservation of a betaalphabeta structural unit, we proposed a beta barrel fold for its DNA binding domain, similar to, but topologically distinct from, double-psi beta barrels. However, the NMR structure revealed a novel fold, the "looped-hinge helix.
View Article and Find Full Text PDFBackground: As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex.
View Article and Find Full Text PDFClpS is a small protein, usually encoded immediately upstream of ClpA in the genomes of proteobacteria. Recent results show that it is a molecular adaptor for substrate recognition by ClpA in Escherichia coli. We analyzed ClpS by bioinformatic methods and found that ClpS homologs are also found in organisms that lack ClpA, such as actinobacteria, cyanobacteria, and plant chloroplasts.
View Article and Find Full Text PDFFold recognition predicts protein three-dimensional structure by establishing relationships between a protein sequence and known protein structures. Most methods explicitly use information derived from the secondary and tertiary structure of the templates. Here we show that rigorous application of a sequence search method (PSI-BLAST) with no reference to secondary or tertiary structure information is able to perform as well as traditional fold recognition methods.
View Article and Find Full Text PDFThymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis. The tmk gene from the bacterial pathogen Streptococcus pneumoniae was identified. The gene, encoding a 212-amino-acid polypeptide (23352 Da), was cloned and overexpressed in Escherichia coli with an N-terminal hexahistidine tag.
View Article and Find Full Text PDFWe applied a new protocol based on PSI-Blast to predict the structures of fold recognition targets during CASP4. The protocol used a back-validation step to infer biologically significant connections between sequences with PSI-Blast E-values up to 10. If connections were found to proteins of known structure, alignments were generated by using HMMer.
View Article and Find Full Text PDFHorizontal gene transfer (HGT) has long been recognized as a principal force in the evolution of genomes. Genome sequences of Archaea and Bacteria have revealed the existence of genes whose similarity to loci in distantly related organisms is explained most parsimoniously by HGT events. In most multicellular organisms, such genetic fixation can occur only in the germ line.
View Article and Find Full Text PDFA comparative genomic approach was used to identify Helicobacter pylori 26695 open reading frames (ORFs) which are conserved in H. pylori J99 but highly diverged in other eubacteria. A survey of selected pathways of central intermediary metabolism was also carried out, and genes with a potentially selective role in H.
View Article and Find Full Text PDFTwo-component signal transduction (TCST) systems are the principal means for coordinating responses to environmental changes in bacteria as well as some plants, fungi, protozoa, and archaea. These systems typically consist of a receptor histidine kinase, which reacts to an extracellular signal by phosphorylating a cytoplasmic response regulator, causing a change in cellular behavior. Although several model systems, including sporulation and chemotaxis, have been extensively studied, the evolutionary relationships between specific TCST systems are not well understood, and the ancestry of the signal transduction components is unclear.
View Article and Find Full Text PDFThermoplasma acidophilum is a thermoacidophilic archaeon that thrives at 59 degrees C and pH 2, which was isolated from self-heating coal refuse piles and solfatara fields. Species of the genus Thermoplasma do not possess a rigid cell wall, but are only delimited by a plasma membrane. Many macromolecular assemblies from Thermoplasma, primarily proteases and chaperones, have been pivotal in elucidating the structure and function of their more complex eukaryotic homologues.
View Article and Find Full Text PDFA genomics-based approach was used to identify the entire gene complement of putative two-component signal transduction systems (TCSTSs) in Streptococcus pneumoniae. A total of 14 open reading frames (ORFs) were identified as putative response regulators, 13 of which were adjacent to genes encoding probable histidine kinases. Both the histidine kinase and response regulator proteins were categorized into subfamilies on the basis of phylogeny.
View Article and Find Full Text PDFMembers of the AAA family of ATPases have been implicated in chaperone-like activities. We used the archaeal Cdc48/p97 homologue VAT as a model system to investigate the effect of an AAA protein on the folding and unfolding of two well-studied, heterologous substrates, cyclophilin and penicillinase. We found that, depending on the Mg2+ concentration, VAT assumes two states with maximum rates of ATP hydrolysis that differ by an order of magnitude.
View Article and Find Full Text PDFBackground: The VAT protein of the archaebacterium Thermoplasma acidophilum, like all other members of the Cdc48/p97 family of AAA ATPases, has two ATPase domains and a 185-residue amino-terminal substrate-recognition domain, VAT-N. VAT shows activity in protein folding and unfolding and thus shares the common function of these ATPases in disassembly and/or degradation of protein complexes.
Results: Using nuclear magnetic resonance (NMR) spectroscopy, we found that VAT-N is composed of two equally sized subdomains.
We applied a succession of sequence search and structure prediction methods to the targets in the fold recognition part of the CASP3 experiment. For each target, we expanded an initial sequence space, obtained through PSI-BLAST, by searching for statistically significant relationships to low-scoring sequences and then by searching for conserved sequence patterns. We then divided the proteins in the sequence space into families and built an alignment hierarchically, using the multiple alignment program MACAW.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 1998
The protein energy landscape theory is used to obtain optimal energy functions for protein structure prediction via simulated annealing. The analysis here takes advantage of a more complete statistical characterization of the protein energy landscape and thereby improves on previous approximations. This schema partially takes into account correlations in the energy landscape.
View Article and Find Full Text PDFSequence comparisons of highly related archaeal adenylate kinases (AKs) from the mesophilic Methanococcus voltae, the moderate thermophile Methanococcus thermolithotrophicus, and two extreme thermophiles Methanococcus igneus and Methanococcus jannaschii, allow identification of interactions responsible for the large variation in temperatures for optimal catalytic activity and thermostabilities observed for these proteins. The tertiary structures of the methanococcal AKs have been predicted by using homology modeling to further investigate the potential role of specific interactions on thermal stability and activity. The alignments for the methanococcal AKs have been generated by using an energy-based sequence-structure threading procedure against high-resolution crystal structures of eukaryotic, eubacterial, and mitochondrial adenylate and uridylate (UK) kinases.
View Article and Find Full Text PDFA quantitative form of the principle of minimal frustration is used to obtain from a database analysis statistical mechanical energy functions and gap parameters for aligning sequences to three-dimensional structures. The analysis that partially takes into account correlations in the energy landscape improves upon the previous approximations of Goldstein et al. (1994, 1995) (Goldstein R, Luthey-Schulten Z, Wolynes P, 1994, Proceedings of the 27th Hawaii International Conference on System Sciences.
View Article and Find Full Text PDF