Publications by authors named "Korenivski V"

We analytically solve the Landau-Lifshitz equations for the collective magnetization dynamics in a synthetic antiferromagnet (SAF) nanoparticle and uncover a regime of barrier-free switching under a short small-amplitude magnetic field pulse applied perpendicular to the SAF plane. We give examples of specific implementations for forming such low-power and ultra-fast switching pulses. For fully optical, resonant, barrier-free SAF switching we estimate the power per write operation to be  pJ, 10-100 times smaller than for conventional quasi-static rotation, which should be attractive for memory applications.

View Article and Find Full Text PDF

The structure and magnetic properties of epitaxial Heusler alloy films (CoFeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (T), and those deposited at room temperature were later annealed at various temperatures (T). X-ray diffraction confirmed (001) [110] CoFeGe || (001) [100] MgO epitaxial growth.

View Article and Find Full Text PDF

The demagnetization and associated magnetocaloric effect (MCE) in strong-weak-strong ferromagnetic trilayers, upon a reorientation of the strong ferromagnets from parallel to antiparallel (AP) magnetization, is simulated using atomistic spin dynamics. The simulations yield non-trivial spin distributions in the AP state, which in turn allows entropy to be calculated directly. The influence of longer-range spin-spin interactions and of variable strength of the external switching field are investigated.

View Article and Find Full Text PDF

We observe a strong thermally controlled magnon-mediated interlayer coupling of two ferromagnetic layers via an antiferromagnetic spacer in spin-valve type trilayers. The effect manifests itself as a coherent switching as well as collective resonant precession of the two ferromagnets, which can be controlled by varying temperature and the spacer thickness. We explain the observed behavior as due to a strong hybridization of the ferro- and antiferromagnetic magnon modes in the trilayer at temperatures just below the Néel temperature of the antiferromagnetic spacer.

View Article and Find Full Text PDF

We observe and analyze tunable relaxation of a pure spin current by an antiferromagnet in spin valves. This is achieved by carefully controlling the angle between a resonantly excited ferromagnetic layer pumping the spin current and the Néel vector of the antiferromagnetic layer. The effect is observed as an angle-dependent spin-pumping contribution to the ferromagnetic resonance linewidth.

View Article and Find Full Text PDF

Spin valves form a key building block in a wide range of spintronic concepts and devices from magnetoresistive read heads to spin-transfer-torque oscillators. We elucidate the dependence of the magnetic damping in the free layer on the angle its equilibrium magnetization makes with that in the fixed layer. The spin pumping-mediated damping is anisotropic and tensorial, with Gilbert- and Bloch-like terms.

View Article and Find Full Text PDF

Mechanisms of the recently demonstrated ex-situ thermal control of the indirect exchange coupling in magnetic multilayer are discussed for different designs of the spacer layer. Temperature-induced changes in the hysteresis of magnetization are shown to be associated with different types of competing interlayer exchange interactions. Theoretical analysis indicates that the measured step-like shape and hysteresis of the magnetization loops is due to local in-plane magnetic anisotropy of nano-crystallites within the strongly ferromagnetic films.

View Article and Find Full Text PDF

Ferromagnetic resonance properties of F1/f/F2/AF multilayers, where weakly ferromagnetic spacer f is sandwiched between strongly ferromagnetic layers F1 and F2, with F1 being magnetically soft and F2-magnetically hard due to exchange pinning to antiferromagnetic layer AF, are investigated. Spacer-mediated exchange coupling is shown to strongly affect the resonance fields of both F1 and F2 layers. Our theoretical calculations as well as measurements show that the key magnetic parameters of the spacer, which govern the ferromagnetic resonance in F1/f/F2/AF, are the magnetic exchange length (Λ), effective saturation magnetization at T  =  0 (m0) and effective Curie temperature (T(C)(eff)).

View Article and Find Full Text PDF

Polycrystalline (Co2Fe)(x)Ge(1-x) Heusler alloy films are fabricated by sputtering on amorphous substrates and shown to possess three types of magnetic anisotropy. The nearly stoichiometric composition of x = 50 m.f.

View Article and Find Full Text PDF

Patterning of materials at sub-10 nm dimensions is at the forefront of nanotechnology and employs techniques of various complexity, efficiency, areal scale, and cost. Colloid-based patterning is known to be capable of producing individual sub-10 nm objects. However, ordered, large-area nano-arrays, fully integrated into photonic or electronic devices have remained a challenging task.

View Article and Find Full Text PDF

We investigate nanopillars in which two thin ferromagnetic particles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. We find that the previously unexplored limit of strong vortex core-core coupling can dominate the spin dynamics in the system. We observe experimentally and explain analytically and numerically how the 0.

View Article and Find Full Text PDF

The magnetic decay time of a synthetic antiferromagnet comprised of two closely spaced magnetic dipoles is measured in the presence of microwave excitation. The system is known to be highly stable with respect to switching between its two antiparallel ground states under quasistatic magnetic fields. We show that an order of magnitude lower field can switch the pair, provided the field is applied in resonance with the optical eigenmode of the collective spin dynamics in the system.

View Article and Find Full Text PDF

We present a theoretical design for a single-mode, truly subwavelength terahertz disk laser based on a nanocomposite gain medium comprising an array of normal-metal/ferromagnetic (FM) point contacts embedded in a thin dielectric layer. Stimulated emission of light occurs due to spin-flip relaxation of spin-polarized electrons injected from the FM side of the contacts. Ultrahigh electrical current densities in the contacts and a dielectric material with a large refractive index, neither condition being achievable in conventional semiconductor media, enables the thresholds of lasing to be overcome for the lowest-order modes of the disk, making single-mode operation possible.

View Article and Find Full Text PDF

Point contacts between normal and ferromagnetic metals are investigated using magnetoresistance and transport spectroscopy measurements combined with micromagnetic simulations. Pronounced hysteresis in the point contact resistance versus both bias current and external magnetic field are observed. It is found that such hysteretic resistance can exhibit, in addition to bi-stable resistance states found in ordinary spin valves, tri-stable resistance states with a middle resistance level.

View Article and Find Full Text PDF

We study spin transport in a superconducting nanowire using a set of closely spaced magnetic tunnel contacts. We observe a giant enhancement of the spin accumulation of up to 5 orders of magnitude on transition into the superconducting state, consistent with the expected changes in the density of states. The spin relaxation length decreases by an order of magnitude from its value in the normal state.

View Article and Find Full Text PDF

We demonstrate a spin diode consisting of a semiconductor-free nanoscale Fe/MgO-based double tunnel junction. The device exhibits a near perfect spin-valve effect combined with a strong diode effect. The mechanism consistent with our data is resonant tunneling through discrete states in the middle ferromagnetic layer sandwiched by tunnel barriers of different spin-dependent transparency.

View Article and Find Full Text PDF

We report an observation of spin-valve-like hysteresis within a few atomic layers at a ferromagnetic interface. We use phonon spectroscopy of nanometer-sized point contacts as an in situ probe to study the mechanism of the effect. Distinctive energy phonon peaks for contacts with dissimilar nonmagnetic outer electrodes allow localizing the observed spin switching to the top or bottom interfaces for nanometer thin ferromagnetic layers.

View Article and Find Full Text PDF

The notion of decoupling of spin and charge currents is one of the basic principles underlying the rapidly expanding field of spintronics. However, no direct demonstration of the phenomenon exists. We report a novel measurement in which a nonequilibrium spin population is created by a pointlike injection of current from a ferromagnet across a tunnel barrier into a one-dimensional spin channel and detected differentially by a pair of ferromagnetic electrodes placed symmetrically about the injection point.

View Article and Find Full Text PDF

Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts.

View Article and Find Full Text PDF

Spin dependent transport in a ferromagnet-superconductor single-electron transistor is studied theoretically taking into account spin accumulation, spin relaxation, gap suppression, and charging effects. A strong dependence of the gap on the magnetic state of the electrodes is found, which gives rise to a magnetoresistance of up to 100%. We predict that fluctuations of the spin accumulation can play such an important role as to cause the island to fluctuate between the superconducting and normal states.

View Article and Find Full Text PDF