Publications by authors named "Korendovych I"

Among the important questions in supramolecular peptide self-assemblies are their interactions with metallic compounds and ions. In the last decade, intensive efforts have been devoted to understanding the structural properties of these interactions including their dynamical and catalytic impact in natural and de novo systems. Since structural insights from experimental approaches could be particularly challenging, computational chemistry methods are interesting complementary tools.

View Article and Find Full Text PDF

Once considered a thermodynamic minimum of the protein fold or as simply by-products of a misfolding process, amyloids are increasingly showing remarkable potential for promoting enzyme-like catalysis. Recent studies have demonstrated a diverse range of catalytic behaviors that amyloids can promote way beyond the hydrolytic behaviors originally reported. We and others have demonstrated the strong propensity of catalytic amyloids to facilitate redox reactions both in the presence and in the absence of metal cofactors.

View Article and Find Full Text PDF

Kinetic characterization of catalytic amyloids arguably presents a most challenging type of kinetic experiment where careful consideration of many factors is required. Here we outline common pitfalls in devising kinetic studies in such systems. Unlike the more specific protocols for various applications described in this volume, this chapter deals with general issues in setting up kinetic experiments that are incredibly important but often go without explicit mention in the specialized literature.

View Article and Find Full Text PDF
Article Synopsis
  • Directed evolution has revolutionized protein engineering by enabling quick enhancements of protein properties, but it faces challenges due to the vast number of potential protein sequences to explore.
  • Identifying mutagenic hot spots—areas on proteins where changes are likely to lead to beneficial outcomes—is crucial for making directed evolution more efficient.
  • Recent advancements in protein dynamics and machine learning are offering promising strategies for pinpointing these hot spots, which could significantly propel the field forward.
View Article and Find Full Text PDF

Peptide materials have a wide array of functions, from tissue engineering and surface coatings to catalysis and sensing. Tuning the sequence of amino acids that comprise the peptide modulates peptide functionality, but a small increase in sequence length leads to a dramatic increase in the number of peptide candidates. Traditionally, peptide design is guided by human expertise and intuition and typically yields fewer than ten peptides per study, but these approaches are not easily scalable and are susceptible to human bias.

View Article and Find Full Text PDF

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20 combinations, which is beyond any existing experimental approach.

View Article and Find Full Text PDF

Here we demonstrate that short peptides, designed from first principles, self-assemble on the surface of graphite to produce a highly robust and catalytic nanoarchitecture, which promotes peroxidation reactions with activities that rival those of natural enzymes in both single and multi-substrate reactions. These designable peptides recapitulate the symmetry of the underlying graphite surface and act as molecular scaffolds to immobilize hemin molecules on the electrode in a hierarchical self-assembly manner. The highly ordered and uniform hybrid graphite-peptide-hemin nanoarchitecture shows the highest faradaic efficiency of any hybrid electrode reported.

View Article and Find Full Text PDF

Originally regarded as a disease symptom, amyloids have shown a rich diversity of functions, including biologically beneficial ones. As such, the traditional view of polypeptide aggregation into amyloid-like structures being 'misfolding' should rather be viewed as 'alternative folding.' Various amyloid folds have been recently used to create highly efficient catalysts with specific catalytic efficiencies rivaling those of enzymes.

View Article and Find Full Text PDF

The self-assembly of short peptides gives rise to versatile nanomaterials capable of promoting efficient catalysis. We have shown that short, seven-residue peptides bind hemin to produce functional catalytic materials which display highly efficient peroxidation activity, reaching a catalytic efficiency of 3×10  m  s . Self-assembly is essential for catalysis as non-assembling controls show no activity.

View Article and Find Full Text PDF

The self-assembly of short peptides into catalytic amyloid-like nanomaterials has proven to be a powerful tool in both understanding the evolution of early proteins and identifying new catalysts for practically useful chemical reactions. Here we demonstrate that both parallel and antiparallel arrangements of β-sheets can accommodate metal ions in catalytically productive coordination environments. Moreover, synergistic relationships, identified in catalytic amyloid mixtures, can be captured in macrocyclic and sheet-loop-sheet species, that offer faster rates of assembly and provide more complex asymmetric arrangements of functional groups, thus paving the way for future designs of amyloid-like catalytic proteins.

View Article and Find Full Text PDF

Interactions between multiple functional groups are key to catalysis. Previously, we reported synergistic interactions in catalytic amyloids formed by mixtures of heptameric peptides that lead to significant improvements in esterase activity. Herein, we describe the in-depth investigation of synergistic interactions within a family of amyloid fibrils, exploring the results of functional group interactions, the effects of chirality and the use of mixed enantiomers within fibrils.

View Article and Find Full Text PDF

The self-assembly of short peptides gives rise to versatile nanoassemblies capable of promoting efficient catalysis. We have semi-rationally designed a series of seven-residue peptides that form hemin-binding catalytic amyloids to facilitate enantioselective cyclopropanation with efficiencies that rival those of engineered hemin proteins. These results demonstrate that: 1) Catalytic amyloids can bind complex metallocofactors to promote practically important multisubstrate transformations.

View Article and Find Full Text PDF

Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties.

View Article and Find Full Text PDF

Minimalist enzymes designed to catalyze model reactions provide useful starting points for creating catalysts for practically important chemical transformations. We have shown that Kemp eliminases of the AlleyCat family facilitate conversion of leflunomide (an immunosupressor pro-drug) to its active form teriflunomide with outstanding rate enhancement (nearly four orders of magnitude) and catalytic proficiency (more than seven orders of magnitude) without any additional optimization. This remarkable activity is achieved by properly positioning the substrate in close proximity to the catalytic glutamate with very high pK.

View Article and Find Full Text PDF

The field of protein design has grown enormously in the past few decades. In this review we discuss the minimalist approach to design of artificial enzymes, in which protein sequences are created with the minimum number of elements for folding and function. This method relies on identifying starting points in catalytically inert scaffolds for active site installation.

View Article and Find Full Text PDF

Self-assembly enables formation of incredibly diverse supramolecular structures with practically important functions from simple and inexpensive building blocks. Here, we show how a semirational, bottom-up approach to create emerging properties can be extended to a design of highly enantioselective catalytic nanoassemblies. The designed peptides comprising as few as two amino acid residues spontaneously self-assemble in the presence of metal ions to form supramolecular, vesicle-like nanoassemblies that promote transfer hydrogenation of ketones in an aqueous phase with excellent conversion rates and enantioselectivities (>90% ee).

View Article and Find Full Text PDF

Self-assembly of short de novo designed peptides gives rise to catalytic amyloids capable of facilitating multiple chemical transformations. We show that catalytic amyloids can efficiently hydrolyze paraoxon, a widely used, highly toxic organophosphate pesticide. Moreover, these robust and inexpensive metal-containing materials can be easily deposited on various surfaces producing catalytic flow devices.

View Article and Find Full Text PDF

A computationally designed, allosterically regulated catalyst (CaM M144H) produced by substituting a single residue in calmodulin, a non-enzymatic protein, is capable of efficient and site selective post-translational acylation of lysines in peptides with highly diverse sequences. Calmodulin's binding partners are involved in regulating a large number of cellular processes; this new chemical-biology tool will help to identify them and provide structural insight into their interactions with calmodulin.

View Article and Find Full Text PDF

Aggregation of proteins into amyloids has long been recognized as one of the major contributors to disease and aging. Amyloids are known to catalyze their own formation but they have been considered the rock-bottom thermodynamic minimum of the protein fold without much functionality. We have recently demonstrated that aggregation of short peptides in the presence of metal ions gives rise to efficient catalytic activity.

View Article and Find Full Text PDF

Self-assembly of molecules often results in new emerging properties. Even very short peptides can self-assemble into structures with a variety of physical and structural characteristics. Remarkably, many peptide assemblies show high catalytic activity in model reactions reaching efficiencies comparable to those found in natural enzymes by weight.

View Article and Find Full Text PDF

This mini review gives an overview over different design approaches and methodologies applied in rational and semirational enzyme engineering. The underlying principles for engineering novel activities, enantioselectivity, substrate specificity, stability, and pH optimum are summarized.

View Article and Find Full Text PDF

Throughout biology, amyloids are key structures in both functional proteins and the end product of pathologic protein misfolding. Amyloids might also represent an early precursor in the evolution of life because of their small molecular size and their ability to self-purify and catalyze chemical reactions. They also provide attractive backbones for advanced materials.

View Article and Find Full Text PDF

The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations show that it involves coordination of the substrate's N-atom to haem-Fe(II) with electron transfer and concomitant N-O heterolysis liberating an intermediate having a nitrogen radical moiety Fe(III)-N· and a phenoxyl anion.

View Article and Find Full Text PDF