Publications by authors named "Korbinian Schneeberger"

Background: Understanding the molecular basis of sport mutations in fruit trees has the potential to accelerate generation of improved cultivars.

Results: For this, we analyzed the genome of the apple tree that developed the RubyMac phenotype through a sport mutation that led to the characteristic fruit coloring of this variety. Overall, we found 46 somatic mutations that distinguished the mutant and wild-type branches of the tree.

View Article and Find Full Text PDF

Background: Plant meristems are structured organs consisting of distinct layers of stem cells, which differentiate into new plant tissue. Mutations in meristematic layers can propagate into large sectors of the plant. However, the characteristics of meristematic mutations remain unclear, limiting our understanding of the genetic basis of somaclonal phenotypic variation.

View Article and Find Full Text PDF

Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana.

View Article and Find Full Text PDF

Although originally primarily a system for functional biology, Arabidopsis thaliana has, owing to its broad geographical distribution and adaptation to diverse environments, developed into a powerful model in population genomics. Here we present chromosome-level genome assemblies of 69 accessions from a global species range. We found that genomic colinearity is very conserved, even among geographically and genetically distant accessions.

View Article and Find Full Text PDF

Centromeres strongly affect (epi)genomic architecture and meiotic recombination dynamics, influencing the overall distribution and frequency of crossovers. Here we show how recombination is regulated and distributed in the holocentric plant Rhynchospora breviuscula, a species with diffused centromeres. Combining immunocytochemistry, chromatin analysis and high-throughput single-pollen sequencing, we discovered that crossover frequency is distally biased, in sharp contrast to the diffused distribution of hundreds of centromeric units and (epi)genomic features.

View Article and Find Full Text PDF

Meiotic recombination is an essential mechanism during sexual reproduction and includes the exchange of chromosome segments between homologous chromosomes. New allelic combinations are transmitted to the new generation, introducing novel genetic variation in the offspring genomes. With the improvement of high-throughput whole-genome sequencing technologies, large numbers of recombinant individuals can now be sequenced with low sequencing depth at low costs, necessitating computational methods for reconstructing their haplotypes.

View Article and Find Full Text PDF

Haplotype-resolved genome assemblies remain a challenge in practice. Here, we provide a step-by-step guide on gamete binning, a method to generate haplotype-resolved genome assemblies for diploid species. The protocol starts by phasing heterozygous variants to individual haplotypes of specific chromosomes using the genome information of individual haploid gametes of the focal individual.

View Article and Find Full Text PDF

Gene flow between species in the genus Arabidopsis occurs in significant amounts, but how exactly gene flow is achieved is not well understood. Polyploidization may be one avenue to explain gene flow between species. One problem, however, with polyploidization as a satisfying explanation is the occurrence of lethal genomic instabilities in neopolyploids as a result of genomic exchange, erratic meiotic behavior, and genomic shock.

View Article and Find Full Text PDF

Loss-of-function alleles of plant MLO genes confer broad-spectrum resistance to powdery mildews in many eudicot and monocot species. Although barley (Hordeum vulgare) mlo mutants have been used in agriculture for more than 40 years, understanding of the molecular principles underlying this type of disease resistance remains fragmentary. Forward genetic screens in barley have revealed mutations in two Required for mlo resistance (Ror) genes that partially impair immunity conferred by mlo mutants.

View Article and Find Full Text PDF

Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early.

View Article and Find Full Text PDF

Meiotic recombination frequency varies along chromosomes and strongly correlates with sequence divergence. However, the causal relationship between recombination landscapes and polymorphisms is unclear. Here, we characterize the genome-wide recombination landscape in the quasi-absence of polymorphisms, using Arabidopsis thaliana homozygous inbred lines in which a few hundred genetic markers were introduced through mutagenesis.

View Article and Find Full Text PDF

Summary: Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of multiple assembled genomes of individual species and demands new tools for visualizing their structural properties. Here, we present plotsr, an efficient tool to visualize structural similarities and rearrangements between genomes.

View Article and Find Full Text PDF

Potato is the most widely produced tuber crop worldwide. However, reconstructing the four haplotypes of its autotetraploid genome remained an unsolved challenge. Here, we report the 3.

View Article and Find Full Text PDF

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome.

View Article and Find Full Text PDF

Root hair formation in is a well-established model system for epidermal patterning and morphogenesis in plants. Over the last decades, many underlying regulatory genes and well-established networks have been identified by thorough genetic and molecular analysis. In this study, we used a forward genetic approach to identify genes involved in root hair development in , a related crucifer species that diverged from approximately 26-40 million years ago.

View Article and Find Full Text PDF

The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, and , respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Genome assembly is a key challenge in computational genomics that involves linking smaller DNA sequences (contigs) to form larger structures (pseudo-chromosomes) using related species' incomplete assemblies.
  • Researchers propose addressing a specific issue in homology-based scaffolding by using alignments of segments within contigs to find the most similar segments in another assembly, which is formulated as the longest run subsequence (LRS) problem.
  • The study shows that LRS is NP-hard, provides solution strategies, and successfully applies these approaches to efficiently solve cases from Arabidopsis thaliana assemblies, with all data and source code made publicly available.
View Article and Find Full Text PDF

Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic basis of differences in how two Lotus japonicus varieties respond to a specific rhizobial strain by using QTL-seq technology.
  • Researchers identified the Pxy gene as crucial for these varied responses, which encodes a receptor-like kinase related to plant growth and development.
  • The findings show that mutations in the Pxy gene lead to issues with root and stem organization as well as the formation of lateral roots and nodules, linking genetic variation to the nodulation process in legumes.
View Article and Find Full Text PDF

Calcium (Ca ) is a second messenger for plant cell surface and intracellular receptors mediating pattern-triggered and effector-triggered immunity (respectively, PTI and ETI). Several CYCLIC NUCLEOTIDE-GATED CHANNELS (CNGCs) were shown to control transient cytosolic Ca influx upon PTI activation. The contributions of specific CNGC members to PTI and ETI remain unclear.

View Article and Find Full Text PDF

Generating chromosome-level, haplotype-resolved assemblies of heterozygous genomes remains challenging. To address this, we developed gamete binning, a method based on single-cell sequencing of haploid gametes enabling separation of the whole-genome sequencing reads into haplotype-specific reads sets. After assembling the reads of each haplotype, the contigs are scaffolded to chromosome level using a genetic map derived from the gametes.

View Article and Find Full Text PDF

Although gene duplications provide genetic backup and allow genomic changes under relaxed selection, they may potentially limit gene flow. When different copies of a duplicated gene are pseudofunctionalized in different genotypes, genetic incompatibilities can arise in their hybrid offspring. Although such cases have been reported after manual crosses, it remains unclear whether they occur in nature and how they affect natural populations.

View Article and Find Full Text PDF

The circadian clock modulates immune responses in plants and animals; however, it is unclear how host-pathogen interactions affect the clock. Here we analyzed clock function in Arabidopsis thaliana mutants with defective immune responses and found that enhanced disease susceptibility 4 (eds4) displays alterations in several circadian rhythms. Mapping by sequencing revealed that EDS4 encodes the ortholog of NUCLEOPORIN 205, a core component of the inner ring of the nuclear pore complex (NPC).

View Article and Find Full Text PDF

Several pathways conferring environmental flowering responses in Arabidopsis () converge on developmental processes that mediate the floral transition in the shoot apical meristem. Many characterized mutations disrupt these environmental responses, but downstream developmental processes have been more refractory to mutagenesis. Here, we constructed a quintuple mutant impaired in several environmental pathways and showed that it possesses severely reduced flowering responses to changes in photoperiod and ambient temperature.

View Article and Find Full Text PDF

Despite hundreds of sequenced Arabidopsis genomes, very little is known about the degree of genomic collinearity within single species, due to the low number of chromosome-level assemblies. Here, we report chromosome-level reference-quality assemblies of seven Arabidopsis thaliana accessions selected across its global range. Each genome reveals between 13-17 Mb rearranged, and 5-6 Mb non-reference sequences introducing copy-number changes in ~5000 genes, including ~1900 non-reference genes.

View Article and Find Full Text PDF