Birdshot chorioretinopathy is an inflammatory eye condition strongly associated with MHC-I allele HLA-A29. The striking association with MHC-I suggests involvement of T cells, whereas natural killer (NK) cell involvement remains largely unstudied. Here we show that HLA-A29-positive birdshot chorioretinopathy patients have a skewed NK cell pool containing expanded CD16 positive NK cells which produce more proinflammatory cytokines.
View Article and Find Full Text PDFCigarette smoking, a powerful mixture of chemical oxidants, is the strongest environmental risk factor for developing age-related macular degeneration (AMD), the most common cause of blindness among the elderly in western societies. Despite intensive study, the full impact of smoking on the retinal pigment epithelium (RPE), a central cell type involved in AMD pathobiology, remains unknown. The relative contribution of the known dysfunctional pathways to AMD, at what stage they are most pathogenic, or whether other processes are relevant, is poorly understood, and furthermore, whether smoking activates them, is unknown.
View Article and Find Full Text PDFPhotoreceptor loss is the final common endpoint in most retinopathies that lead to irreversible blindness, and there are no effective treatments to restore vision. Chemical reprogramming of fibroblasts offers an opportunity to reverse vision loss; however, the generation of sensory neuronal subtypes such as photoreceptors remains a challenge. Here we report that the administration of a set of five small molecules can chemically induce the transformation of fibroblasts into rod photoreceptor-like cells.
View Article and Find Full Text PDFPurpose: Retinal organoids generated from human pluripotent stem cells exhibit considerable variability during differentiation. Our goals are to assess developmental maturity of the neural retina in vitro and design improved protocols based on objective criteria.
Methods: We performed transcriptome analyses of developing retinal organoids from human embryonic and induced pluripotent stem cell lines and utilized multiple bioinformatic tools for comparative analysis.
In the mammalian retina, rod and cone photoreceptors transmit the visual information to bipolar neurons through highly specialized ribbon synapses. We have limited understanding of regulatory pathways that guide morphogenesis and organization of photoreceptor presynaptic architecture in the developing retina. While neural retina leucine zipper (NRL) transcription factor determines rod cell fate and function, cone-rod homeobox (CRX) controls the expression of both rod- and cone-specific genes and is critical for terminal differentiation of photoreceptors.
View Article and Find Full Text PDFPluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells.
View Article and Find Full Text PDFGene regulatory networks (GRNs) guiding differentiation of cell types and cell assemblies in the nervous system are poorly understood because of inherent complexities and interdependence of signaling pathways. Here, we report transcriptome dynamics of differentiating rod photoreceptors in the mammalian retina. Given that the transcription factor NRL determines rod cell fate, we performed expression profiling of developing NRL-positive (rods) and NRL-negative (S-cone-like) mouse photoreceptors.
View Article and Find Full Text PDFMicrotubule actin crosslinking factor 1 (MACF1) plays a role in the coordination of microtubules and actin in multiple cellular processes. Here, we show that MACF1 is also critical for ciliogenesis in multiple cell types. Ablation of Macf1 in the developing retina abolishes ciliogenesis, and basal bodies fail to dock to ciliary vesicles or migrate apically.
View Article and Find Full Text PDFPurpose: The generation of three-dimensional (3D) organoids with optic cup-like structures from pluripotent stem cells has created opportunities for investigating mammalian retinal development . However, retinal organoids in culture do not completely reflect the developmental state and architecture of the rod-dominant mouse retina. The goals of this study were to develop an efficient protocol for generating retinal organoids from stem cells and examine the morphogenesis of rods .
View Article and Find Full Text PDFWe discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium.
View Article and Find Full Text PDFThe derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue.
View Article and Find Full Text PDFmicroRNA expression and sequence analysis database (http://konulab.fen.bilkent.
View Article and Find Full Text PDF