Research Background: Sourdough is a spontaneously formed, complex microbial ecosystem of various lactic acid bacteria (LAB) and yeast which, by producing specific metabolites, determines the quality of the baked products. In order to design and control the sourdough with preferred nutritional characteristics, it is crucial that the LAB diversity of the product of interest be elucidated.
Experimental Approach: Using the opportunities of next-generation sequencing (NGS) of the V1-V3 hypervariable gene region of 16S rRNA, we studied the microbial ecosystem of a whole grain sourdough made of , originating from Southwestern Bulgaria.
Sourdoughs (SDs) are spontaneously formed microbial ecosystems composed of various species of lactic acid bacteria (LAB) and acid-tolerant yeasts in food matrices of cereal flours mixed with water. To date, more than 90 LAB species have been isolated, significantly impacting the organoleptic characteristics, shelf life, and health properties of bakery products. To learn more about the unique bacterial communities involved in creating regional Bulgarian sourdoughs, we examined the metacommunities of five sourdoughs produced by spontaneous fermentation and maintained by backslopping in bakeries from three geographic locations.
View Article and Find Full Text PDFAbstract: Salmonella is one of the main causes of foodborne diseases worldwide. Molecular tests such as the PCR assay are rapid and sensitive and are increasingly becoming the preferred method for pathogen detection. However, the presence in the analyzed samples of substances that reduce the sensitivity of the assay or totally inhibit PCR amplification might result in failure of pathogen detection.
View Article and Find Full Text PDFObjective: To study two major molecular alterations in spontaneous abortions (SA) with unexplained etiology - fetal genomic anomalies and the endometrial expression of main angiogenic factors VEGFA/VEGFR2 and chemokines SDF-1/CXCR4.
Materials And Methods: Whole genome copy number analysis by arrayCGH or Next Generation Sequencing (NGS) was applied for detection of fetal genomic imbalances. The abortive decidua of SA without fetal aneuploidies was further investigated for expression levels of the abovementioned factors using real time PCR analysis.
Epigenetic changes, in particular DNA methylation processes, play a role in the pathogenesis and progression of type 2 diabetes mellitus (T2DM) linking genetic and environmental factors. To clarify this role, we have analyzed in patients with different duration of T2DM: (i) expression levels of methyl-CpG-binding domain protein 2 () as marker of DNA methylation, and ii) methylation changes in 22 genes connected to cellular stress and toxicity. We have analyzed mRNA expression levels in16 patients and 12 controls and the methylation status of stress and toxicity genes in four DNA pools: (i) controls; (ii) newly-diagnosed T2DM patients; (iii) patients with T2DM duration of <5 years and (iv) of >5 years.
View Article and Find Full Text PDFCore histone acetylation is a key prerequisite for chromatin decondensation and plays a pivotal role in regulation of chromatin structure, function and dynamics. The addition of acetyl groups disturbs histone/DNA interactions in the nucleosome and alters histone/histone interactions in the same or adjacent nucleosomes. Acetyl groups can also provide binding sites for recruitment of bromodomain (BRD)-containing non-histone readers and regulatory complexes to chromatin allowing them to perform distinct downstream functions.
View Article and Find Full Text PDFHDAC inhibitors have been proposed as radiosensitizers in cancer therapy. Their application would permit the use of lower radiation doses and would reduce the adverse effects of the treatment. However, the molecular mechanisms of their action remain unclear.
View Article and Find Full Text PDFBackground: Histone deacetylase inhibitors have been proposed as potential enhancers of the cytotoxic effect of cisplatin and other anticancer drugs. Their application would permit the use of lower therapeutic doses and reduction of the adverse side effects of the drugs. However, the molecular mechanisms by which they sensitize the cells towards anticancer drugs are not known in details, which is an obstacle in developing effective therapeutic protocols.
View Article and Find Full Text PDFCurr Microbiol
December 2006
Saccharomyces cerevisiae NUD1 gene codes for a spindle pole body component and nud1 temperature-sensitive mutants arrest at 38 degrees C in late anaphase with a tendency for lysis. We found that addition of 10% sorbitol to the medium complemented the lytic phenotype, and determination of colony-forming units evidenced the viability of nud1 cells for at least 48 hours at 38 degrees C. The protein amount in cell-free medium increased at 38 degrees C, and evidence is presented that intact nud1 cells exported proteins in amounts 10-fold higher compared wild type strains.
View Article and Find Full Text PDF