Publications by authors named "Koppel H"

A quantal description of nuclear motion using coupled fifteen-state potential energy and spin-orbit coupling surfaces for studying the photodissociation of CHOO to HCO(XA) + OD and HCO(XA) + OP channels is presented. For the evaluation of surfaces, multireference electronic wave functions are employed. For the fully quantal description of the nuclear motion, we diabatize the PESs of the two and four lowest excited singlet and triplet states, respectively, within the three sets of vibronically coupled states, (BA', CA'), (aA', bA') and (aA'', bA''), employing the diabatization by ansatz method.

View Article and Find Full Text PDF

The nonadiabatic photodynamics of all-trans linear polyenes with = 4-8 conjugated double bonds is studied from an electronic structure perspective. Excitation energies and stationary points for the 1 and 2 singlet states have been computed by using the state-average complete active space (SA-CASSCF) method and its second-order perturbation theory variant (MS-CASPT2). The dependence of the two low-lying excited states on the "chain length" has been elucidated.

View Article and Find Full Text PDF

The photodynamics and BA' ← XA' absorption spectrum of acetone oxide, (CH)COO, are studied theoretically from first principles. The underlying adiabatic potential energy curves (and surfaces) are computed by a second-order multireference perturbation theory method and diabatized using a diabatization by ansatz scheme. To confirm the results, for selected geometries EOM-CCSD and XMS-RS2C calculations were also performed.

View Article and Find Full Text PDF

Vibronic interactions in the ground and two excited states of the imidazole radical cation, XA″ (π), AA' (nσ), and BA″ (π), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al.

View Article and Find Full Text PDF

An extended theoretical analysis of the photodissociation of the smallest Criegee intermediate CHOO following excitation to the B state is presented. It relies on explicitly correlated multireference electronic wavefunctions combined with a quantum dynamical treatment for two interacting (B-C) electronic states and three coupled nuclear degrees of freedom. The 3D model relies on PESs along the O-O and C-O stretching as well as C-O-O bending modes for the two lowest excited states with ' symmetry, and is sufficiently accurate to reproduce the experimental BA'-XA' absorption spectrum, especially at the low-energy range to unprecedented accuracy.

View Article and Find Full Text PDF

Vibronic interactions in the pyridine radical cation ground state, A, and its lowest excited states, A and B, are studied theoretically. These states originate from the ionization out of the highest occupied orbitals of pyridine, 7a (nσ), 1a (π), and 2b (π), respectively, and give rise to the lowest two photoelectron maxima. According to our previous high-level ab initio calculations [Trofimov et al.

View Article and Find Full Text PDF

The excited state dynamics of the s-trans-1,3-butadiene cation, focusing on the second and third bands of the photoelectron spectrum, have been investigated using a fully quantal approach, for the first time. The five lowest electronic states XB, AA, BA, CB, and DA considering the six vibrational modes S, S, S, S, S, and S were taken into account in the nuclear quantum dynamical investigation. The potential energy curves have been calculated along these coordinates for the five lowest electronic states using the RS2C method.

View Article and Find Full Text PDF

A brief pedagogic rederivation is given of basic exciton coupling theory, taking the nuclear coordinates to be fixed. This is then extended to take variations of these coordinates into account by adopting suitable multimode coupling models and extracting the transfer of excitation energy from the populations of the locally excited states. The dynamical problem thus defined is solved numerically in a fully quantal manner.

View Article and Find Full Text PDF

The valence shell photoelectron spectrum of -dichloroethene has been studied both experimentally and theoretically. Photoelectron spectra have been recorded with horizontally and vertically plane polarized synchrotron radiation, thereby allowing the anisotropy parameters, characterizing the angular distributions, to be determined. The third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function has been employed to compute the complete valence shell ionization spectrum.

View Article and Find Full Text PDF

Observing the crucial first few femtoseconds of photochemical reactions requires tools typically not available in the femtochemistry toolkit. Such dynamics are now within reach with the instruments provided by attosecond science. Here, we apply experimental and theoretical methods to assess the ultrafast nonadiabatic vibronic processes in a prototypical complex system-the excited benzene cation.

View Article and Find Full Text PDF

Considering that the homozygous (CTG) genotype affords protection against diabetic nephropathy (DN) in female patients with type 2 diabetes, this study assessed if this association remains gender-specific when applying clinical inclusion criteria (CIC-DN) or biopsy proof (BP-DN). Additionally, it assessed if the prevalence of the protective genotype changes with diabetes duration and time on hemodialysis and if this occurs in association with serum carnosinase (CN-1) activity. Whereas the distribution of the (CTG) homozygous genotype in the no-DN and CIC-DN patients was comparable, a lower frequency was found in the BP-DN patients, particularly in females.

View Article and Find Full Text PDF

We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN.

View Article and Find Full Text PDF

The short-time molecular quantum dynamics of all-trans-octatetraene after electronic excitation to the first bright valence state is theoretically investigated. A semiempirical approach of a multireference configuration interaction based on density functional theory, the so called hybrid DFT/MRCI, in both its original and redesigned formulations, is used for treating the electronic part of the problem. The nuclear kinetic part is defined with the help of symmetry-adapted internal coordinates also suitable for a large amplitude displacement.

View Article and Find Full Text PDF

The S/S splitting of the m-cyanophenol dimer, (mCP) and the delocalization of its excitonically coupled S/S states are investigated by mass-selective two-color resonant two-photon ionization and dispersed fluorescence spectroscopy, complemented by a theoretical vibronic coupling analysis based on correlated ab initio calculations at the approximate coupled cluster CC2 and SCS-CC2 levels. The calculations predict three close-lying ground-state minima of (mCP): The lowest is slightly Z-shaped (C-symmetric); the second-lowest is <5 cm higher and planar (C). The vibrational ground state is probably delocalized over both minima.

View Article and Find Full Text PDF

The dynamics of the nonadiabatically coupled lowest singlet excited states of cis- and trans-hexatriene are studied theoretically, in a comprehensive electronic structure and quantum dynamical investigation. At the ground state equilibrium geometry the relevant S2 and S1 states carry the A1 (Ag) and B2 (Bu) symmetry labels, for the cis (trans) isomer. Various high-level electronic structure methods are used, including the recently reparametrized DFT/MRCI method, and the results are critically compared.

View Article and Find Full Text PDF

The interplay between excitonic and vibronic coupling in hydrogen-bonded molecular dimers leads to complex spectral structures and other intriguing phenomena such as a quenching of the excitonic energy splitting. We recently extended our analysis from that of the quenching mechanism to the theoretical investigation of the complete vibronic spectrum for the ortho-cyanophenol dimer. We now apply the same approach to the vibronic spectrum of the 2-pyridone dimer and discuss the assignment of vibronic lines to gain insight into the underlying coupling mechanism.

View Article and Find Full Text PDF

After decades of research on molecular excitons, only few molecular dimers are available on which exciton and vibronic coupling theories can be rigorously tested. In centrosymmetric H-bonded dimers consisting of identical (hetero)aromatic chromophores, the monomer electronic transition dipole moment vectors subtract or add, yielding S → S and S → S transitions that are symmetry-forbidden or -allowed, respectively. Symmetry breaking by C/C or H/D isotopic substitution renders the forbidden transition weakly allowed.

View Article and Find Full Text PDF

The S2←S0 vibronic spectrum of the ortho-cyanophenol dimer (oCP)2 is analyzed in a joint experimental and theoretical investigation. Vibronic excitation energies up to 750 cm(-1) are covered, which extends our previous analysis of the quenching of the excitonic splitting in this and related species [Kopec et al., J.

View Article and Find Full Text PDF

The photoelectron spectrum of uracil and the molecular dynamics of its radical cation are investigated using the multiconfigurational time-dependent Hartree (MCTDH) method. For this aim, the vibronic coupling model Hamiltonian is used including up to ten important a' modes. Moreover, to account for coupling through conical intersections between states of different symmetry in the system, coupling constants of two a″ modes are taken into account.

View Article and Find Full Text PDF

In humans, we reported an association of a certain allele of carnosinase gene with reduced carnosinase activity and absence of nephropathy in diabetic patients. CN1 degrades histidine dipeptides such as carnosine and anserine. Further, we and others showed that treatment with carnosine improves renal function and wound healing in diabetic mice and rats.

View Article and Find Full Text PDF

The study of excited triplet states of a molecular system is a difficult task because accessing them involves forbidden transitions from the singlet ground state. Nevertheless, absorption spectra of many molecules present, at low energies, the weak fingerprint of these triplet states. At higher energies this information is usually masked by the intense signal of the singlet states.

View Article and Find Full Text PDF

We present an ab initio quantum study of the photoelectron spectra of sulfur dioxide, based on wavepacket propagations on manifolds of ionic, and excited/Rydberg states. We obtain excellent agreement for two different cases. First, the one photon ionization case where we can reproduce all details of the experimental spectrum and demonstrate the influence of the conical intersection between two of the ionic states.

View Article and Find Full Text PDF

Abundant evidence across the behavioral and social sciences suggests that there are substantial individual differences in pro-social behavior. However, little is known about the psychological mechanisms that underlie social preferences. This paper investigates whether empathy and Theory of Mind shape individual differences in pro-social behavior as conventionally observed in neutrally framed social science experiments.

View Article and Find Full Text PDF

Even though the sulfur dioxide molecule has been extensively studied over the last decades, its photo-excitation dynamics is still unclear, due to its complexity, combining conical intersections, and spin-orbit coupling between a manifold of states. We present a comprehensive ab initio study of the intersystem crossing of the molecule in the low energy domain, based on a wave-packet propagation on the manifold of the lowest singlet and triplet states. Furthermore, spin-orbit couplings are evaluated on a geometry-dependent grid, and diabatized along with the different conical intersections.

View Article and Find Full Text PDF

A new general framework for treating the dynamics on intersecting multidimensional potential energy surfaces is presented. It rests on a sub-division of the nuclear coordinates into different classes, one of primary importance with large-amplitude displacements during the process of interest and another one with smaller displacements, thus permitting a more approximate description. The latter are treated within the well-known linear + quadratic vibronic coupling scheme, where, however, the expansion "coefficients" are general functions of the "primary" coordinates.

View Article and Find Full Text PDF