Publications by authors named "Kopanitsa G"

A dynamic study of ceramide concentrations and their association with recurrent event risk could enhance our understanding of cardiovascular complications. To assess the prognostic value of ceramide concentrations (Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:1), Cer(d18:1/24:0)) and their dynamics in combination with standard clinical and laboratory parameters and therapeutic interventions in ACS patients. Among 110 ACS patients, triple blood sampling was performed for targeted lipidomic analysis using high-performance liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

This study explores endometrial cancer (EC) within the broader context of oncogynecology, focusing on 3,845 EC patients at the Almazov National Research Center. The research analyzes clinical data, employing machine learning techniques like random forest regression and decision tree analysis. Key findings include age-dependent impacts on EC outcomes, unexpected correlations between dietary habits and recurrence risk (e.

View Article and Find Full Text PDF

Inconsistent disease coding standards in medicine create hurdles in data exchange and analysis. This paper proposes a machine learning system to address this challenge. The system automatically matches unstructured medical text (doctor notes, complaints) to ICD-10 codes.

View Article and Find Full Text PDF

This study focuses on the complex interplay of healthcare, economic factors, and population dynamics, addressing a research gap in regional-level models that integrate diverse features within a temporal framework. Our primary objective is to develop an advanced temporal model for predicting cardiovascular mortality in Russian regions by integrating global and local healthcare features with economic and population dynamics. Utilizing a dataset from the Almazov Center's Department of Mortality Performance Monitoring, covering 94 regions and 752 records from January 1, 2015, to December 31, 2023, our analysis incorporates key parameters such as angioplasty procedures, population morbidity rates, Ischemic Heart Disease (IHD) and Cardiovascular Diseases (CVD) monitoring, and demographic data.

View Article and Find Full Text PDF

Aortic stenosis (AS) is the most commonly diagnosed valvular heart disease, and its prevalence increases with the aging of the general population. However, AS is often diagnosed at a severe stage, necessitating surgical treatment, due to its long asymptomatic period. The objective of this study was to analyze the frequency of AS in a population of cardiovascular patients using echocardiography (ECHO) and to identify clinical factors and features associated with these patient groups.

View Article and Find Full Text PDF

Machine learning methods enable medical systems to automatically generate data-driven decision support models using real-world data inputs, eliminating the need for explicit rule design. In this research, we investigated the application of machine learning methods in healthcare, specifically focusing on pregnancy and childbirth risks. The timely identification of risk factors during early pregnancy, along with risk management, mitigation, prevention, and adherence management, can significantly reduce adverse perinatal outcomes and complications for both mother and child.

View Article and Find Full Text PDF

Diagnostics accuracy and usability of symptom checkers have been researched in several studies. Their ability to set a correct diagnosis especially in the urgent cases is questionable. There is one aspect of symptom checkers that has not been deeply studied yet.

View Article and Find Full Text PDF

Machine learning methods to predict the risk of epilepsy, including vascular epilepsy, in oncohematological patients are currently considered promising. These methods are used in research to predict pharmacoresistant epilepsy and surgical treatment outcomes in order to determine the epileptogenic zone and functional neural systems in patients with epilepsy, as well as to develop new approaches to classification and perform other tasks. This paper presents the results of applying machine learning to analyzing data and developing diagnostic models of epilepsy in oncohematological and cardiovascular patients.

View Article and Find Full Text PDF

Aortic aneurysm (AA) rapture is one of the leading causes of death worldwide. Unfortunately, the diagnosis of AA is often verified after the onset of complications, in most cases after aortic rupture. The aim of this study was to evaluate the frequency of ascending aortic aneurysm (AscAA) and aortic dilatation (AD) in patients with cardiovascular diseases undergoing echocardiography, and to identify the main risk factors depending on the morphology of the aortic valve.

View Article and Find Full Text PDF

The complications of thoracic aortic disease include aortic dissection and aneurysm. The risks are frequently compounded by many cardiovascular comorbidities, which makes the process of clinical decision making complicated. The purpose of this study is to develop risk predictive models for patients after thoracic aneurysm surgeries, using integrated data from different medical institutions.

View Article and Find Full Text PDF

Background: One of the current major factors of not following up on the abnormal test results is the lack of information about the test results and missing interpretations. Clinical decision support systems (CDSS) can become a solution to this problem. However, little is known how patients react to the automatically generated interpretations of the test results, and how this can affect a decision to follow up.

View Article and Find Full Text PDF

The paper presents a conceptual framework for building practically applicable clinical decision support systems (CDSSs) using data-driven (DD) predictive modelling. With the proposed framework we have tried to fill the gap between experimental CDSS implementations widely covered in the literature and solutions acceptable by physicians in daily practice. The framework is based on a three-stage approach where DD model definition is accomplished with practical norms referencing (scales, clinical recommendations, etc.

View Article and Find Full Text PDF

One serious pandemic can nullify years of efforts to extend life expectancy and reduce disability. The coronavirus pandemic has been a perturbing factor that has provided an opportunity to assess not only the effectiveness of health systems for cardio-vascular diseases (CVD), but also their sustainability. The goal of our research is to analyze the influence of public health factors on the mortality from circulatory diseases using machine learning methods.

View Article and Find Full Text PDF

We present a user acceptance study of a clinical decision support system (CDSS) for Type 2 Diabetes Mellitus (T2DM) risk prediction. We focus on how a combination of data-driven and rule-based models influence the efficiency and acceptance by doctors. To evaluate the perceived usefulness, we randomly generated CDSS output in three different settings: Data-driven (DD) model output; DD model with a presence of known risk scale (FINDRISK); DD model with presence of risk scale and explanation of DD model.

View Article and Find Full Text PDF

Due to the specific circumstances related to the COVID-19 pandemic, many countries have enforced emergency measures such as self-isolation and restriction of movement and assembly, which are also directly affecting the functioning of their respective public health and judicial systems. The goal of this study is to identify the efficiency of the criminal sanctions in Russia that were introduced in the beginning of COVID-19 outbreak using machine learning methods. We have developed a regression model for the fine handed out, using random forest regression and XGBoost regression, and calculated the features importance parameters.

View Article and Find Full Text PDF

Endometrial cancer (EC) is the most common gynecological tumor in high-income countries, and its incidence has increased over time. The most critical risk factor for EC is the long-term unopposed exposure to increased estrogens both exogenous and endogenous. Machine learning can be used as a promising tool to resolve longstanding challenges and support identification of the risk factors and their correlations before the clinical trials and make them more focused.

View Article and Find Full Text PDF

According to different systematic reviews incidence of thoracic aortic aneurysms (TAA) in the general population is increasing in frequency ranging from 5 to 10.4 per 100000 patients. However, only few studies have illustrated the role of different risk factors in the onset and progression of ascending aortic dilatation.

View Article and Find Full Text PDF

This article describes the results of feature extraction from unstructured medical records and prediction of postoperative complications for patients with thoracic aortic aneurysm operations using machine learning algorithms. The datasets from two different medical centers were integrated. Seventy-two features were extracted from Russian unstructured medical records.

View Article and Find Full Text PDF

Background: The larger part of essential medical knowledge is stored as free text which is complicated to process. Standardization of medical narratives is an important task for data exchange, integration, and semantic interoperability.

Objectives: The article aims to develop the end-to-end pipeline for structuring Russian free-text allergy anamnesis using international standards.

View Article and Find Full Text PDF

In this study we are developing predictive models for a length of stay after a gynecological surgery, complications and the length of the surgery using machine learning methods. The study was performed with the data of patients with the diseases of the female reproductive system. The patients were admitted to the Almazov National Medical Research Centre (Saint-Petersburg, Russia) within the period 2010-2020.

View Article and Find Full Text PDF

The outbreak of COVID-19 has led to a crucial change in ordinary healthcare approaches. In comparison with emergencies re-allocation of resources for a long period of time is required and the peak utilization of the resources is also hard to predict. Furthermore, the epidemic models do not provide reliable information of the development of the pandemic's development, so it creates a high load on the healthcare systems with unforeseen duration.

View Article and Find Full Text PDF

Failing to follow up on the abnormal test results can cause serious health problems to patients. We conducted a retrospective medical record review of 3200 randomly selected patients aged 18 to 76 in 14 state clinics and two private laboratory services querying the common regional patient registry. One patient could be included (1 clinical case) in the study only once.

View Article and Find Full Text PDF

The current pandemic can likely have several waves and will require a major effort to save lives and provide optimal treatment. The efficient clinical resource planning and efficient treatment require identification of risk groups and specific clinical features of the patients. In this study we develop analyze mortality for COVID19 patients in Russia.

View Article and Find Full Text PDF

The use of different data formats complicates the standardization and exchange of valuable medical data. Moreover, a big part of medical data is stored as unstructured medical records that are complicated to process. In this work we solve the task of unstructured allergy anamnesis categorization according to categories provided by FHIR.

View Article and Find Full Text PDF

Specific predictive models for diabetes polyneuropathy based on screening methods, for example Nerve conduction studies (NCS, can reach up to AUC 65.8 - 84.7 % for the conditional diagnosis of DPN in primary care.

View Article and Find Full Text PDF