Publications by authors named "Kooyk Y"

Understanding the molecular mechanisms which drive and modulate host-pathogen interactions are essential when designing effective therapeutic and diagnostic approaches aimed at controlling infectious diseases. Certain large and giant viruses have recently been discovered as components of the human virome, yet little is known about their interactions with the host immune system. We have dissected the role of viral N-linked glycans during the interaction between the glycoproteins from six chloroviruses (belonging to three chlorovirus classes: NC64A, SAG, and Osy viruses) and the representative carbohydrate-binding receptors of the innate immune system.

View Article and Find Full Text PDF

Background: Allergen-specific immunotherapy (AIT) is so far the only disease-modifying therapy for allergy, resulting in a long-lasting tolerance. However, the existing safety concerns and the need for more efficacious alternatives that shorten the duration of treatment have stimulated research into the development of novel alternatives. Some of these novel alternatives involve modifying allergens with molecules that target innate immunomodulatory receptors to suppress the immune activity of immune cells.

View Article and Find Full Text PDF

The immune system is a complex network of highly specialized microenvironments, denominated niches, which arise from dynamic interactions between immune and parenchymal cells as well as acellular components such as structural elements and local molecular signals. A critical, yet underexplored, layer shaping these niches is the glycome, the complete repertoire of glycans and glycoconjugates produced by cells. The glycome is prevalent in the outer membrane of cells and their secreted components, and can be sensed by glycan binding receptors on immune cells.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) decorating the cell surface of Gram-negative bacteria exhibit nuanced functionalities linked to their precise structural composition. However, despite their critical role in health and disease, information on the structure and function of LPS from members of the human gut microbiota is still limited. Here, we deciphered the complete structure of the LPS isolated from the human gut bacterium Bacteroides eggerthii 1_2_48FAA.

View Article and Find Full Text PDF

Cancer vaccines are a promising strategy to increase tumor-specific immune responses in patients who do not adequately respond to checkpoint inhibitors. Cancer vaccines that contain patient-specific tumor antigens are most effective but also necessitate the production of patient-specific vaccines. This study aims to develop a versatile cancer vaccine format in which patient-specific tumor antigens can be site-specifically conjugated by a proximity-based Sortase A (SrtA)-mediated ligation (PBSL) approach to antibodies that specifically bind to antigen-presenting cells to stimulate immune responses.

View Article and Find Full Text PDF

Cancer vaccines can be utilized in combination with checkpoint inhibitors to optimally stimulate the anti-tumor immune response. Uptake of vaccine antigen by antigen presenting cells (APCs) is a prerequisite for T cell priming, but often relies on non-specific mechanisms. Here, we have developed a novel vaccination strategy consisting of cancer antigen-containing liposomes conjugated with CD169- or DC-SIGN-specific nanobodies (single domain antibodies) to achieve specific uptake by APCs.

View Article and Find Full Text PDF

Cancer vaccines have emerged as a potent strategy to improve cancer immunity, with or without the combination of checkpoint blockade. In our investigation, liposomal formulations containing synthetic long peptides and α-Galactosylceramide, along with a DC-SIGN-targeting ligand, Lewis Y (Le), were studied for their anti-tumor potential. The formulated liposomes boosted with anti-CD40 adjuvant demonstrated robust invariant natural killer (iNKT), CD4, and CD8 T-cell activation in vivo.

View Article and Find Full Text PDF

Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year survival of less than 10%. More knowledge of the immune response developed in patients with PDAC is pivotal to develop better combination immune therapies to improve clinical outcome. In this study, we used mass cytometry time-of-flight to undertake an in-depth characterization of PBMCs from patients with PDAC and examine the differences with healthy controls and patients with benign diseases of the biliary system or pancreas.

View Article and Find Full Text PDF

Despite recent advances in cancer immunotherapy, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive due to an immunosuppressive tumor microenvironment, which is characterized by the abundance of cancer-associated fibroblasts (CAFs). Once identified, CAF-mediated immune inhibitory mechanisms could be exploited for cancer immunotherapy. Siglec receptors are increasingly recognized as immune checkpoints, and their ligands, sialic acids, are known to be overexpressed by cancer cells.

View Article and Find Full Text PDF

Veillonella parvula, prototypical member of the oral and gut microbiota, is at times commensal yet also potentially pathogenic. The definition of the molecular basis tailoring this contrasting behavior is key for broadening our understanding of the microbiota-driven pathogenic and/or tolerogenic mechanisms that take place within our body. In this study, we focused on the chemistry of the main constituent of the outer membrane of V.

View Article and Find Full Text PDF

Changes in glycosylation patterns have been associated with malignant transformation and clinical outcomes in several cancer types, prompting ongoing research into the mechanisms involved and potential clinical applications. In this study, we performed an extensive transcriptomic analysis of glycosylation-related genes and pathways, using publicly available bulk and single cell transcriptomic datasets from tumor samples and cancer cell lines. We identified genes and pathways strongly associated with different tumor types, which may represent novel diagnostic biomarkers.

View Article and Find Full Text PDF

Background: Glioblastomas manipulate the immune system both locally and systemically, yet, glioblastoma-associated changes in peripheral blood immune composition are poorly studied. Age and dexamethasone administration in glioblastoma patients have been hypothesized to limit the effectiveness of immunotherapy, but their effects remain unclear. We compared peripheral blood immune composition in patients with different types of brain tumor to determine the influence of age, dexamethasone treatment, and tumor volume.

View Article and Find Full Text PDF

Modulation of immune responses through immune checkpoint blockade has revolutionized cutaneous melanoma treatment. However, it is still the case that not all patients respond successfully to these therapies, indicating the presence of as yet unknown resistance mechanisms. Hence, it is crucial to find novel targets to improve therapy efficacy.

View Article and Find Full Text PDF

Background: House dust mite extract-based allergen immunotherapy (AIT) to treat house dust mite allergy is substantially effective but still presents some safety and efficacy concerns that warrant improvement. Several major allergen-based approaches to increase safety and efficacy of AIT have been proposed. One of them is the use of the group 2 allergen, Der p 2.

View Article and Find Full Text PDF

Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy.

View Article and Find Full Text PDF

Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169 macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8 T cells.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Despite the successful application of immune checkpoint blockade in a range of human cancers, immunotherapy in PDAC remains unsuccessful. PDAC is characterized by a desmoplastic, hypoxic and highly immunosuppressive tumor microenvironment (TME), where T-cell infiltration is often lacking (immune desert), or where T cells are located distant from the tumor islands (immune excluded).

View Article and Find Full Text PDF
Article Synopsis
  • * Single-cell suspensions revealed that tumor tissues had lower ratios of lymphoid to myeloid cells and an imbalance between M1 and M2 macrophages compared to non-tumorous tissues.
  • * It was found that the central tumor area is the most immune-suppressive, with a significant presence of immune-suppressive cells compared to the invasive front and adjacent non-tumorous tissue.
View Article and Find Full Text PDF

Background: Patients with resectable and borderline resectable pancreatic ductal adenocarcinoma increasingly receive neoadjuvant therapy prior to surgery. However, the effect of neoadjuvant therapy on the immune microenvironment remains largely unknown. We analyzed the immune microenvironment in pancreatic cancer tumor tissue samples from patients treated with neoadjuvant therapy compared to patients after upfront surgery to gain knowledge about the immunological environment after therapy.

View Article and Find Full Text PDF

Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.

View Article and Find Full Text PDF
Article Synopsis
  • Human milk oligosaccharides (HMOs), particularly 2'-Fucosyllactose (2'-FL), have immunomodulatory properties and can inhibit the binding of the receptor DC-SIGN to its specific ligands in a dose-dependent manner.
  • The study indicates that 2'-FL specifically binds to DC-SIGN without affecting another similar receptor, langerin, highlighting its selectivity.
  • Molecular dynamic simulations suggest that 2'-FL has a preorganized structure that allows for stronger binding to DC-SIGN, potentially replacing other ligands in immune responses.
View Article and Find Full Text PDF

Cancer vaccination aims to activate immunity towards cancer cells and can be achieved by delivery of cancer antigens together with immune stimulatory adjuvants to antigen presenting cells (APC). APC maturation and antigen processing is a subsequent prerequisite for T cell priming and anti-tumor immunity. In order to specifically target APC, nanoparticles, such as liposomes, can be used for the delivery of antigen and adjuvant.

View Article and Find Full Text PDF

Dendritic cells (DCs) control adaptive immunity and are therefore attractive for in vivo targeting to either induce immune activation or tolerance, depending on disease. Liposomes, nanoparticles comprised of a lipid bi-layer, provide a nanoplatform for loading disease-relevant antigen, adjuvant and DC-targeting molecules simultaneously. However, it is yet not fully understood how liposomal formulations affect uptake by DCs and DC function.

View Article and Find Full Text PDF