Publications by authors named "Koonchira Buaban"

Drug development requires significant time and resources, and computer-aided drug discovery techniques that integrate chemical and biological spaces offer valuable tools for the process. This study focused on the field of COVID-19 therapeutics and aimed to identify new active non-covalent inhibitors for 3CL, a key protein target. By combining in silico and in vitro approaches, an in-house database was utilized to identify potential inhibitors.

View Article and Find Full Text PDF

The semisynthesis of 5-O-ester derivatives of renieramycin T was accomplished through the photoredox reaction of renieramycin M (1), a bistetrahydroisoquinolinequinone alkaloid isolated from the Thai blue sponge Xestospongia sp. This process led to the conversion of compound 1 to renieramycin T (2), which was subsequently subjected to Steglich esterification with appropriate acylating agents containing linear alkyl, N-tert-butoxycarbonyl-L-amino, and heterocyclic aromatic substituent. Notably, the one-pot transformation, combining the photoredox reaction and esterification led to the formation of 7-O-ester derivatives of renieramycin S due to hydrolysis.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC), the most prevalent form of lung cancer, is associated with an unfavorable prognosis owing to its high rate of metastasis. Thus, the identification of new drugs with potent anticancer activities is essential to improve the clinical outcome of this disease. Marine organisms exhibit a diverse source of biologically active compounds with anticancer effects.

View Article and Find Full Text PDF

The semisynthesis of renieramycin-type derivatives was achieved under mild and facile conditions by attaching a 1,3-dioxole-bridged phenolic moiety onto ring A of the renieramycin structure and adding a 4'-pyridinecarbonyl ester substituent at its C-5 or C-22 position. These were accomplished through a light-induced intramolecular photoredox reaction using blue light (4 W) and Steglich esterification, respectively. Renieramycin M (), a bis-tetrahydroisoquinolinequinone compound isolated from the Thai blue sponge ( sp.

View Article and Find Full Text PDF

A dysregulation of the cell-death mechanism contributes to poor prognosis in lung cancer. New potent chemotherapeutic agents targeting apoptosis-deregulating molecules have been discovered. In this study, 22-(4-pyridinecarbonyl) jorunnamycin A (22-(4'py)-JA), a synthetic derivative of bistetrahydroisoquinolinequinone from the Thai blue sponge, was semisynthesized by the Steglich esterification method, and its pharmacological mechanism in non-small-cell lung cancer (NSCLC) was elucidated by a network pharmacology approach.

View Article and Find Full Text PDF

A series of tetrahydro-ß-carbolines substituted with an alkyl or acyl side chain was synthesized and screened for its antifungal activity plant pathogenic fungi (, , and ). The structure activity relationship revealed that the substituent at the piperidine nitrogen plays an important role for increasing antifungal activities. In this series, 2-octyl-2,3,4,9-tetrahydro-1-pyrido[3,4-]indole () displayed potent antifungal activities with a minimum inhibitory concentration of 0.

View Article and Find Full Text PDF