Bioengineering (Basel)
September 2023
Human skeleton data obtained using a depth camera have been used for pathological gait recognition to support doctor or physician diagnosis decisions. Most studies for skeleton-based pathological gait recognition have used either raw skeleton sequences directly or gait features, such as gait parameters and joint angles, extracted from raw skeleton sequences. We hypothesize that using skeleton, joint angles, and gait parameters together can improve recognition performance.
View Article and Find Full Text PDFAlthough attention deficit hyperactivity disorder (ADHD) in children is rising worldwide, fewer studies have focused on screening than on the treatment of ADHD. Most previous similar ADHD classification studies classified only ADHD and normal classes. However, medical professionals believe that better distinguishing the ADHD-RISK class will assist them socially and medically.
View Article and Find Full Text PDFThe identification of attention deficit hyperactivity disorder (ADHD) in children, which is increasing every year worldwide, is very important for early diagnosis and treatment. However, since ADHD is not a simple disease that can be diagnosed with a simple test, doctors require a large period of time and substantial effort for accurate diagnosis and treatment. Currently, ADHD classification studies using various datasets and machine learning or deep learning algorithms are actively being conducted for the screening diagnosis of ADHD.
View Article and Find Full Text PDFSkeleton data, which is often used in the HCI field, is a data structure that can efficiently express human poses and gestures because it consists of 3D positions of joints. The advancement of RGB-D sensors, such as Kinect sensors, enabled the easy capture of skeleton data from depth or RGB images. However, when tracking a target with a single sensor, there is an occlusion problem causing the quality of invisible joints to be randomly degraded.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Gait is an important indicator for specific diseases. Abnormal gait patterns are caused by various factors such as physical, neurological, and sensory problems. If it is possible to recognize abnormal gait patterns in the early stage of the related disease, patients can receive proper treatment early and prevent secondary accidents such as falls caused by unbalanced gait.
View Article and Find Full Text PDF