A modified MTT protocol-based microfluidic image cytometry (μFIC) was performed to assess Cd(2+) induced cytotoxicity. The expanded capabilities of μFIC, such as in situ measurement, high-throughput, and multiparametric analysis of adherent cells under precisely controlled chemical environments of microfluidic channels, were demonstrated in this study. Multiparametric analysis of μFIC data has enabled us to categorize the progress of cell death into at least four different subgroups based on their morphology and metabolic activity.
View Article and Find Full Text PDFMicrofluidic systems have significant implications in the field of in vitro cell-based assays since they may allow conventional cell-based assays to be conducted in an automated and high-throughput fashion. In this study, we combined a simple microfluidic cells-on-chip system with a morphology-based image cytometric analysis approach for the assessment of Cd(2+) induced apoptosis of Chang liver cell line. A simple and efficient in situ monitoring method for quantifying the progress of a cell death event was developed and is presented here.
View Article and Find Full Text PDFWith an increasing use of quantum dots (QDs) in many applications, their potential hazard is of growing concern. However, little is known about their ecotoxicity, especially in vivo. In the present study, we employed freshwater macroinvertebrate, Daphnia magna, to evaluate toxicity characteristics of cadmium selenide/zinc selenide (CdSe/ZnSe) in relation to surface coatings, e.
View Article and Find Full Text PDF