Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
December 2024
Lipid dyshomeostasis and neuroinflammation are key hallmarks of neuropsychiatric and neurodegenerative disorders, including major depressive disorder and Alzheimer's disease. In particular, polyunsaturated fatty acids (PUFAs) and their derivatives called oxylipins gained specific interest in this context, especially considering their capacity to orchestrate neuroinflammatory responses via direct modulation of microglia. The hippocampus and hypothalamus are crucial brain regions for regulating mood and cognition that are implicated in a variety of neuropsychiatric and neurodegenerative disorders and there is ample evidence for the sex-bias in risks for the development as well as sex-bias in the presentation of such psychiatric diseases, including the neuroinflammatory response.
View Article and Find Full Text PDFImportance: Increasing numbers of people with multiple sclerosis (MS) use disease-modifying therapy (DMT). Long-term stable disease while taking such medications provides a rationale for considering DMT discontinuation given patient burden, costs, and potential adverse effects of immunomodulating therapy.
Objective: To investigate whether first-line DMT can be safely discontinued in patients with long-term stable MS.
Mult Scler Relat Disord
December 2024
Background: Multiple sclerosis (MS) is characterized by extensive tissue damage leading to a range of complex symptoms, including physical disability and cognitive dysfunction. Recent work has indicated the clinical relevance of bioactive lipid mediators (LMs), which are known to orchestrate inflammation and its resolution and are deregulated in MS. However, it is unknown whether LM profiles relate to white matter (WM) damage.
View Article and Find Full Text PDFBackground: Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis.
View Article and Find Full Text PDFIn Alzheimer's disease (AD) more than 50% of the patients are affected by capillary cerebral amyloid-angiopathy (capCAA), which is characterized by localized hypoxia, neuro-inflammation and loss of blood-brain barrier (BBB) function. Moreover, AD patients with or without capCAA display increased vessel number, indicating a reactivation of the angiogenic program. The molecular mechanism(s) responsible for BBB dysfunction and angiogenesis in capCAA is still unclear, preventing a full understanding of disease pathophysiology.
View Article and Find Full Text PDFBackground And Objectives: Excessive activation of certain lipid mediator (LM) pathways plays a role in the complex pathogenesis of multiple sclerosis (MS). However, the relationship between bioactive LMs and different aspects of CNS-related pathophysiologic processes remains largely unknown. Therefore, in this study, we assessed the association of bioactive LMs belonging to the ω-3/ω-6 lipid classes with clinical and biochemical (serum neurofilament light [sNfL] and serum glial fibrillary acidic protein [sGFAP]) parameters and MRI-based brain volumes in patients with MS (PwMS) and healthy controls (HCs).
View Article and Find Full Text PDFThe imbalance between pathogenic and protective T cell subsets is a cardinal feature of autoimmune disorders such as multiple sclerosis (MS). Emerging evidence indicates that endogenous and dietary-induced changes in fatty acid metabolism have a major impact on both T cell fate and autoimmunity. To date, however, the molecular mechanisms that underlie the impact of fatty acid metabolism on T cell physiology and autoimmunity remain poorly understood.
View Article and Find Full Text PDFBrain lipid dysregulation is a hallmark of depression and Alzheimer's disease, also marked by chronic inflammation. Early-life stress (ELS) and dietary intake of polyunsaturated fatty acids (PUFAs) are risk factors for these pathologies and are known to impact inflammatory processes. However, if these early-life factors alter brain lipid homeostasis on the long-term and thereby contribute to this risk remains to be elucidated.
View Article and Find Full Text PDFFrontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains.
View Article and Find Full Text PDFOncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS).
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic demyelinating disease characterised by immune cell infiltration resulting in lesions that preferentially affect periventricular areas of the brain. Despite research efforts to define the role of various immune cells in MS pathogenesis, the focus has been on a few immune cell populations while full-spectrum analysis, encompassing others such as natural killer (NK) cells, has not been performed. Here, we used single-cell mass cytometry (CyTOF) to profile the immune landscape of brain periventricular areas - septum and choroid plexus - and of the circulation from donors with MS, dementia and controls without neurological disease.
View Article and Find Full Text PDFDCP-001 is a cell-based cancer vaccine generated by differentiation and maturation of cells from the human DCOne myeloid leukemic cell line. This results in a vaccine comprising a broad array of endogenous tumor antigens combined with a mature dendritic cell (mDC) costimulatory profile, functioning as a local inflammatory adjuvant when injected into an allogeneic recipient. Intradermal DCP-001 vaccination has been shown to be safe and feasible as a post-remission therapy in acute myeloid leukemia.
View Article and Find Full Text PDFThe chronic neuro-inflammatory character of multiple sclerosis (MS) suggests that the natural process to resolve inflammation is impaired. This protective process is orchestrated by specialized pro-resolving lipid mediators (SPMs), but to date, the role of SPMs in MS remains largely unknown. Here, we provide in vivo evidence that treatment with the SPM lipoxin A (LXA) ameliorates clinical symptoms of experimental autoimmune encephalomyelitis (EAE) and inhibits CD4 and CD8 T cell infiltration into the central nervous system (CNS).
View Article and Find Full Text PDFAlzheimer's disease (AD) is the leading cause of dementia worldwide giving rise to devastating forms of cognitive decline, which impacts patients' lives and that of their proxies. Pathologically, AD is characterized by extracellular amyloid deposition, neurofibrillary tangles and chronic neuroinflammation. To date, there is no cure that prevents progression of AD.
View Article and Find Full Text PDFMacrophages represent a major immune cell population in atherosclerotic plaques and play central role in the progression of this lipid-driven chronic inflammatory disease. Targeting immunometabolism is proposed as a strategy to revert aberrant macrophage activation to improve disease outcome. Here, we show ATP citrate lyase (Acly) to be activated in inflammatory macrophages and human atherosclerotic plaques.
View Article and Find Full Text PDFThe choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing.
View Article and Find Full Text PDFThe original publication of this article [1] contained an incorrect author name. The correct and incorrect information is shown in this correction article. The original article has been updated.
View Article and Find Full Text PDFThe choroid plexus (CP) is strategically located between the peripheral blood and the cerebrospinal fluid, and is involved in the regulation of central nervous system (CNS) homeostasis. In multiple sclerosis (MS), demyelination and inflammation occur in the CNS. While experimental animal models of MS pointed to the CP as a key route for immune cell invasion of the CNS, little is known about the distribution of immune cells in the human CP during progressive phases of MS.
View Article and Find Full Text PDFAdv Drug Deliv Rev
August 2021
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders.
View Article and Find Full Text PDFChronic inflammation is a key pathological hallmark of multiple sclerosis (MS) and suggests that resolution of inflammation, orchestrated by specialized pro-resolving lipid mediators (LM), is impaired. Here, through targeted-metabololipidomics in peripheral blood of patients with MS, we revealed that each disease form was associated with distinct LM profiles that significantly correlated with disease severity. In particular, relapsing and progressive MS patients were associated with high eicosanoids levels, whereas the majority of pro-resolving LM were significantly reduced or below limits of detection and correlated with disease progression.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) involves a misdirected immune attack against myelin in the brain and spinal cord, leading to profound neuroinflammation and neurodegeneration. While the mechanisms of disease pathogenesis have been widely studied, the suppression mechanisms that lead to the resolution of the autoimmune response are still poorly understood. Here, we investigated the role of the C-type lectin receptor macrophage galactose-type lectin (MGL), usually expressed on tolerogenic antigen-presenting cells (APCs), as a negative regulator of autoimmune-driven neuroinflammation.
View Article and Find Full Text PDF