Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations.
View Article and Find Full Text PDFBackground: For cancer patients to effectively engage in decision making, they require comprehensive and understandable information regarding treatment options and their associated outcomes. We developed an online prediction tool and supporting communication skills training to assist healthcare providers (HCPs) in this complex task. This study aims to assess the impact of this combined intervention (prediction tool and training) on the communication practices of HCPs when discussing treatment options.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
Contact electrification is an interfacial process in which two surfaces exchange electrical charges when they are in contact with one another. Consequently, the surfaces may gain opposite polarity, inducing an electrostatic attraction. Therefore, this principle can be exploited to generate electricity, which has been precisely done in triboelectric nanogenerators (TENGs) over the last decades.
View Article and Find Full Text PDFThe patient-physician relationship is a critical determinant of patient health outcomes. Verbal and non-verbal communication, such as eye gaze, are vital aspects of this bond. Neurobiological studies indicate that oxytocin may serve as a link between increased eye gaze and social bonding.
View Article and Find Full Text PDFMult Scler J Exp Transl Clin
October 2021
Background: The feasibility of cognitive rehabilitation is rarely investigated in patients with advanced multiple sclerosis.
Methods: Eighteen patients with advanced multiple sclerosis (median EDSS = 7.5) were randomized into restorative or compensatory cognitive rehabilitation.
The wetting properties of multicomponent liquids are crucial to numerous industrial applications. The mechanisms that determine the contact angles for such liquids remain poorly understood, with many intricacies arising due to complex physical phenomena, for example, due to the presence of surfactants. Here, we consider two-component drops that consist of mixtures of vicinal alkanediols and water.
View Article and Find Full Text PDFHypothesis: The Hansen Solubility Parameters (HSP) derived from Molecular Dynamics (MD) simulations can be used as a fast approach to predict surfactants adsorption on a solid surface. Experiments and simulations: We focused on the specific case of siloxane-based surfactants adsorption on silicon oxide surface (SiO), encountered in inkjet printing processes. A simplified atomistic model of the SiO surface was designed to enable the computation of its solubility parameter using MD, and to subsequently determine the interactions of the SiO surface with the siloxane-based surfactant and the various solvents employed.
View Article and Find Full Text PDFThe exceptional hydration of sulfobetaine polymer brushes and their resistance toward nonspecific protein absorption allows for the construction of thin films with excellent antibiofouling properties. In this work, swollen sulfobetaine brushes, prepared by surface-initiated atom transfer radical polymerization of two monomers, differentiated by the nature of the polymerizable group, are studied and compared by a liquid-cell atomic force microscopy technique and spectroscopic ellipsometry. Colloidal AFM-based force spectroscopy is employed to estimate brush grafting density and characterize nanomechanical properties in salt water.
View Article and Find Full Text PDFBeilstein J Nanotechnol
March 2019
The formation of self-assembled superstructures of cetyltrimethylammonium bromide (CTAB) after drying on a nonwetting highly ordered pyrolytic graphite (HOPG) surface have been investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Although SEM did not reveal coverage of CTAB layers, AFM showed not only CTAB assembly, but also the dynamics of the process on the surface. The self-assembled layers of CTAB molecules on the HOPG terraces prior to nanorod deposition were shown to change the wettability of the surface, and as a result, gold nanorod deposition takes place on nonwetting HOPG terraces.
View Article and Find Full Text PDFThe friction of graphene on mica was studied using lateral force microscopy. We observed that intercalation of alcohol molecules significantly increases the friction of graphene, as compared to water. An increase of 1.
View Article and Find Full Text PDFWe use atomic force microscopy to in situ investigate the dynamic behavior of confined water at the interface between graphene and mica. The graphene is either uncharged, negatively charged, or positively charged. At high humidity, a third water layer will intercalate between graphene and mica.
View Article and Find Full Text PDFThe effect of confinement between mica and graphene on the structure and dynamics of alcohol-water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted alcohol-rich islands on top of an ice layer on mica, surrounded by a pre-existing multilayer water-rich film. These faceted islands are in direct contact with the graphene surface, revealing a preferred adsorption site.
View Article and Find Full Text PDFWe present a new method to create dynamic nanobubbles. The nanobubbles are created between graphene and mica by reducing intercalated water to hydrogen. The nanobubbles have a typical radius of several hundred nanometers, a height of a few tens of nanometers and an internal pressure in the range of 0.
View Article and Find Full Text PDFThe effects of neighboring droplets on the dissolution of a sessile droplet, i.e. collective effects, are investigated both experimentally and numerically.
View Article and Find Full Text PDFControlling the alignment and orientation of nanorods on various surfaces poses major challenges. In this work, we investigate hydrodynamic confinement and capillary alignment of gold nanorod assembly on chemically stripe-patterned substrates. The surface patterns consist of alternating hydrophilic and hydrophobic micrometer wide stripes; a macroscopic wettability gradient enables controlling the dynamics of deposited suspension droplets.
View Article and Find Full Text PDFPlasmonic properties of metal nanostructures are appealing due to their potential to enhance photovoltaics or sensing performance. Our aim was to identify the plasmonic characteristics of silver nanoneedles on a reflective layer in the polarized optical response. Experimental ellipsometry results are complemented by finite-difference time-domain (FDTD) calculations.
View Article and Find Full Text PDFThe basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene.
View Article and Find Full Text PDFWe demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.
View Article and Find Full Text PDFThe analogy between evaporating surface droplets in air to dissolving long-chain alcohol droplets in water is worked out. We show that next to the three known modi for surface droplet evaporation or dissolution (constant contact angle mode, constant contact radius mode, and stick-slide mode), a fourth mode exists for small droplets on supposedly smooth substrates, the stick-jump mode: intermittent contact line pinning causes the droplet to switch between sticking and jumping during the dissolution. We present experimental data and compare them to theory to predict the dissolution time in this stick-jump mode.
View Article and Find Full Text PDFExperimentally we explore the potential of using pre-defined motion of a receding contact line to control the deposition of nanoparticles from suspension. Stripe-patterned wettability gradients are employed, which consist of alternating hydrophilic and hydrophobic stripes with increasing macroscopic surface energy. Nanoparticle suspensions containing nanorods and nanospheres are deposited onto these substrates and left to dry.
View Article and Find Full Text PDFA failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation.
View Article and Find Full Text PDFWe studied the shape of water droplets deposited using an inkjet nozzle on a chemically striped patterned substrate consisting of alternating hydrophobic and hydrophilic stripes. The droplet dimensions are comparable to the period of the stripes, typically covering up to 13 stripes. As such, our present results bridge the gap linking two regimes previously considered: (i) droplets on single stripes and (ii) droplets covering more than 50 stripes.
View Article and Find Full Text PDFWe studied the phase separation and spatial arrangement of gold nanorods and nanospheres after evaporative self-assembly from aqueous suspension. Depending on the position relative to the contact line of the drying droplet, spheres and rods separate into various liquid-crystalline phases. Nanorods exhibit a strong preference for side-by-side alignment, giving rise to smectic phases; spheres in solution are forced out of these regions and form close-packed arrays.
View Article and Find Full Text PDFThe primary attribute of interest of surface nanobubbles is their unusual stability and a number of theories trying to explain this have been put forward. Interestingly, the dissolution of nanobubbles is a topic that did not receive a lot of attention yet. In this work we applied two different experimental procedures which should cause gaseous nanobubbles to completely dissolve.
View Article and Find Full Text PDFUsing a combination of ellipsometry and friction force microscopy, we study the reversible swelling, collapse and variation in friction properties of covalently bound poly(N-isopropylacrylamide) (PNIPAM) layers on silicon with different grafting densities in response to exposure to good solvents and co-nonsolvent mixtures. Changes in the thickness and segment density distribution of grafted films are investigated by in situ ellipsometry. Based on quantitative modelling of the ellipsometry spectra, we postulate a structural model, which assumes that collapse takes place in the contacting layer between the brush and the co-nonsolvent and the top-collapsed brushes remain hydrated in the film interior.
View Article and Find Full Text PDF