Publications by authors named "Konwar B"

The main objective of this study was to assess cellulolytic probiotic strains from traditional fermented beverages such as palm wine in order to supplement the animal feed and strengthen the gut health of the animal for better digestibility and absorption. In the present study, different types of microbes were isolated from traditionally prepared palm wine and analyzed for their probiotic nature. For any microbe to be probiotic in nature, it has to sustain the harsh conditions of the human gastrointestinal tract such as acid tolerance, bile tolerance at the lower range of pH, and other properties like auto aggregation test, cell surface hydrophobicity test with non-polar hydrocarbons for evaluating its capabilities to adhere to the intestinal cells and antimicrobial nature against pathogens.

View Article and Find Full Text PDF

The healthcare burden rendered by methicillin-resistant Staphylococcus aureus (MRSA) warrants the development of therapeutics that offer a distinct benefit in the clinics as compared to conventional antibiotics. The present study describes the potential of napthalimide-based synthetic ligands (C1-C3) as inhibitors of the staphylococcal nuclease known as micrococcal nuclease (MNase), a key virulence factor of the pathogen. Amongst the ligands, the most potent MNase inhibitor C1 rendered non-competitive inhibition, reduced MNase turnover number (K) and catalytic efficiency (K/K) with an IC value of ~950 nM.

View Article and Find Full Text PDF

Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates.

View Article and Find Full Text PDF

The staphylococcal nuclease also referred as micrococcal nuclease (MNase) is a key drug target as the enzyme degrades the neutrophil extracellular trap (NET) and empowers the pathogen to subvert the host innate immune system. To this end, the current study presents a critical evaluation of MNase inhibition rendered by benzimidazole-based ligands (C1 and C2) and probes its therapeutic implications. A nuclease assay indicated that MNase inhibition rendered by C1 and C2 was ∼ 55 % and ∼ 72 %, respectively, at the highest tested concentration of 10 µM.

View Article and Find Full Text PDF

Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L.

View Article and Find Full Text PDF

Vaginal canal (VC) is exposed to the external environment affected by habitual factors like hygiene and sexual behaviour as well as physiological factors like puberty, menstrual cycle, pregnancy, child birth and menopause. Healthy VC harbours beneficial microflora supported by vaginal epithelium and cervical fluid. Connatural antimicrobial peptide (AMPs) of female reproductive tract (FRT) conjunctly with these beneficial microbes provide protection from a large number of infectious diseases.

View Article and Find Full Text PDF

Beneficial and pathogenic microbes coexist in the vaginal canal, where a diminishing population of lactic acid bacteria may cause recurring urogenital infections. Probiotic bacteria Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus vaginalis, and pathogenic microbes Enterococcus faecalis, Enterobacter cloacae, Shigella sp., Staphylococcus epidermidis, and Escherichia fergusonii were isolated from vaginal swabs.

View Article and Find Full Text PDF

The present study highlights the prospect of an anthraquinone-based ligand (C1) as an inhibitor of micrococcal nuclease (MNase) enzyme secreted by Staphylococcus aureus. MNase inhibition rendered by 5.0 μM C1 was ∼96 % and the ligand could significantly distort the β-sheet conformation present in MNase.

View Article and Find Full Text PDF
Article Synopsis
  • Digital technologies and open innovation have led to the creation of virtual organizations, exemplified by the International Natural Product Sciences Taskforce (INPST), established in 2018 for collaboration in natural product research.
  • The INPST utilized Twitter for a week-long networking event in June 2021, using the hashtag #INPST to facilitate interactions among participants.
  • Analysis of the event revealed 6,036 tweets from 686 users, resulting in over 65 million impressions, highlighting Twitter's effectiveness for hosting international biomedical research discussions.
View Article and Find Full Text PDF

In the present study, the efficiency of four different strains of and their biosurfactants in the bioremediation process were investigated. The strains were found to be capable of metabolizing a wide range of hydrocarbons (HCs) with preference for high molecular weight aliphatic (ALP) over aromatic (ARO) compounds. After treating with individual bacteria and 11 different consortia, the residual crude oils were quantified and qualitatively analyzed.

View Article and Find Full Text PDF

Aim And Objective: To evaluate a set of seventy phytochemicals for their potential ability to bind the inhibitor of nuclear factor kappaB kinase beta (IKK-β) which is a prime target for cancer and inflammatory diseases.

Materials And Methods: Seventy phytochemicals were screened against IKK-β enzyme using DFT-based molecular docking technique and the top docking hits were carried forward for molecular dynamics (MD) simulation protocols. The ADME-Toxicity analysis was also carried out for the top docking hits.

View Article and Find Full Text PDF

L. Skeels (Myretacae family) is a native plant of the Indian subcontinent which has wide socio-economical importance and is well known for its ant diabetic activity. The present study aimed to investigate the antibiofilm activity of purified fraction (EA) from leaf extract against and .

View Article and Find Full Text PDF

The aim of the present study is to evaluate the probiotic attributes of Bacillus subtilis AMS6 isolated from fermented soybean (Churpi). This isolate exhibited tolerance to low pH (pH 2.0) and bile salt (0.

View Article and Find Full Text PDF

In contrast to the traditional culturing techniques and microscopy that have led to the identification and characterization of only about 15-20 % of the rumen microbes till date, nucleic acid-based molecular approaches are rapid, reproducible, and allow both the qualitative and quantitative assessment of microbial diversity. The aim of this study was to develop a simple, rapid and effective extraction protocol for the recovery of high-molecular-weight and cloneable metagenomic DNA (mDNA) from goat rumen contents. An efficient method was devised to isolate high-molecular-weight mDNA (&>23kb) that was pure and cloneable after isolation in a relatively short period (3.

View Article and Find Full Text PDF

Hsp90 is a major protein involved in the stabilization of various proteins in cancer cells. The present investigation focused on the molecular docking simulation studies of flavanols as inhibitors of Hsp90 at the high affinity adenosine triphosphate (ATP) binding site and analyzed absorption, distribution, metabolism, excretion and toxicity (ADME-toxicity). The molecular docking analysis revealed that the flavanols showed competitive inhibition with ATP molecule at the active site and enhanced pharmacological parameters.

View Article and Find Full Text PDF

A microorganism showing probiotic attributes and hydrolyzing carboxymethylcellulose was isolated from traditional fermented soybean (Churpi) and identified as Bacillus amyloliquefaciens by analysis of 16S rRNA gene sequence and named as B. amyloliquefaciens AMS1. The potentiality of this isolate as probiotic was investigated in vitro and it showed gastrointestinal transit tolerance, cell surface hydrophobicity, cell aggregation and antimicrobial activity.

View Article and Find Full Text PDF

The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate-gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions.

View Article and Find Full Text PDF

Environmental awareness has led to a serious consideration for biological surfactants and hence non-edible vegetable oils may serve as a substitute carbon source for bio-surfactant production (rhamnolipid) which might be an alternative to complex synthetic surfactants. There are reports of rhamnolipid production from plant based oil giving higher production than that of glucose because of their hydrophobicity and high carbon content. Therefore the contribution of non-edible oil such as Mesua ferrea seed oil could serve as a good carbon source for rhamnolipid production.

View Article and Find Full Text PDF

There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.

View Article and Find Full Text PDF

Extraction of DNA from soil samples using standard methods often results in low yield and poor quality making them unsuitable for community analysis through polymerase chain reaction (PCR) due to the formation of chimeric products with smaller template DNAs and the presence of humic substances. The present study focused on the assessment of five different methods for metagenomic DNA isolation from soil samples on the basis of processing time, purity, DNA yield, suitability for PCR, restriction digestion and mDNA library construction. A simple and rapid alkali lysis based on indirect DNA extraction from soil was developed which could remove 90% of humic substances without shearing the DNA and permits the rapid and efficient isolation of high quality DNA without the requirement of hexadecyltrimethylammonium bromide and phenol cleanup.

View Article and Find Full Text PDF

The present study was undertaken to evaluate the mode of antibacterial activity of Eclalbasaponin isolated from Eclipta alba, against selected Gram-positive and Gram-negative bacteria. The probable chemical structure was determined by using various spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy. The antibacterial activity was evaluated by well diffusion technique, pH sensitivity, chemotaxis, and crystal violet assays.

View Article and Find Full Text PDF

The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Nitric oxide synthases (NOS) catalyze to produce nitric oxide (NO) from L-arginine. The isoform of NOS i.e.

View Article and Find Full Text PDF

Rhamnolipid (RL) from Pseudomonas aeruginosa was dissolved in distilled water with concentration equivalent to its critical micelle concentration (CMC). Silver nanoparticles (SNP) synthesized in the RL colloid were found to be stable for more than 1 month. Further, after 1 month when the SNP in RL colloid (SNPRL) were exposed to NaCl solution it took about 60 mg/ml as compared to 2 mg NaCl/ml in the case of SNP colloid for degrading silver nanoparticles.

View Article and Find Full Text PDF