Publications by authors named "Kontsedalov S"

' Liberibacter solanacearum' (Lso) is a plant pathogenic bacterium transmitted by psyllids that causes significant agricultural damage. Several Lso haplotypes have been reported. Among them, LsoA and LsoB are transmitted by the potato psyllid and infect solanaceous crops, and LsoD is transmitted by the carrot psyllid and infects apiaceous crops.

View Article and Find Full Text PDF

The whitefly is one of the most important agricultural pests due to its extreme invasiveness, insecticide resistance, and ability to transmit hundreds of plant viruses. Among these, Begomoviruses and recombinant whitefly-borne Poleroviruses are transmitted persistently. Several studies have shown that upon infection, plant viruses manipulate plant-emitted volatile organic compounds (VOCs), which have important roles in communication with insects.

View Article and Find Full Text PDF

The onion thrip, (Thysanoptera: Thripidae) is a major polyphagous pest that attacks a wide range of economically important crops, especially Allium species. The thrip's damage can result in yield loss of up to 60% in onions (). In the past few decades, thrip resistance to insecticides with various modes of actions have been documented.

View Article and Find Full Text PDF

Several vector-borne plant pathogens have evolved mechanisms to exploit and to hijack vector host cellular, molecular, and defense mechanisms for their transmission. In the past few years, species, which are transmitted by several psyllid vectors, have become an economically important group of pathogens that have devastated the citrus industry and caused tremendous losses to many other important crops worldwide. The molecular mechanisms underlying the interactions of species with their psyllid vectors are poorly studied.

View Article and Find Full Text PDF

Background: Many plant viruses are vector-borne and depend on arthropods for transmission between host plants. Begomoviruses, the largest, most damaging and emerging group of plant viruses, infect hundreds of plant species, and new virus species of the group are discovered each year. Begomoviruses are transmitted by members of the whitefly Bemisia tabaci species complex in a persistent-circulative manner.

View Article and Find Full Text PDF
Article Synopsis
  • Endosymbionts in insects are crucial for their biology and can affect how insect vectors transmit pathogens.
  • A study focused on identifying and characterizing the bacterial diversity of psyllids, specifically those transmitting the carrot yellows disease pathogen, Liberibacter solanacearum (CLso).
  • The results showed a high prevalence of specific endosymbionts in field-collected psyllids, with findings indicating distinct localization patterns in midgut cells and the detection of a virus that reduces titers of CLso in infected psyllids.
View Article and Find Full Text PDF

Bacterial endosymbionts play essential roles in the biology of their arthropod hosts by interacting with internal factors in the host. The whitefly Bemisia tabaci is a worldwide agricultural pest and a supervector for more than 100 plant viruses. Like many other arthropods, Be.

View Article and Find Full Text PDF

Liberibacter solanacerum (CLso), transmitted by in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier.

View Article and Find Full Text PDF

The whitefly is a global pest and transmits extremely important plant viruses especially begomoviruses, that cause substantial crop losses. is one of the top invasive species worldwide and have developed resistance to all major pesticide classes. One of the promising alternative ways for controlling this pest is studying its genetic makeup for identifying specific target proteins which are critical for its development and ability to transmit viruses.

View Article and Find Full Text PDF

Many animal and plant viruses depend on arthropods for their transmission. Virus-vector interactions are highly specific, and only one vector or one of a group of vectors from the same family is able to transmit a given virus. Poleroviruses () are phloem-restricted RNA plant viruses that are exclusively transmitted by aphids.

View Article and Find Full Text PDF

We have recently shown that Rickettsia, a secondary facultative bacterial symbiont that infects the whitefly B. tabaci is implicated in the transmission of Tomato yellow leaf curl virus (TYLCV). Infection with Rickettsia improved the acquisition and transmission of the virus by B.

View Article and Find Full Text PDF

The egg parasitpoids (Nagaraja) and (Marchal) (Hymenoptera: Trichogrammatidae), are reported for the first time in Israel. Moreover, our discovery of is the first report of this parasitoid species outside of India. The occurrence of those trichogrammatids was first discovered and documented in May 2016 during a survey of egg parasitoids of the False codling moth (Lepidoptera: Tortricidae).

View Article and Find Full Text PDF

Carrot yellows disease has been associated for many years with the Gram-positive, insect-vectored bacteria, 'Candidatus Phytoplasma' and Spiroplasma citri. However, reports in the last decade also link carrot yellows symptoms with a different, Gram-negative, insect-vectored bacterium, 'Ca. Liberibacter solanacearum'.

View Article and Find Full Text PDF

Citrus greening disease known also as Huanglongbing (HLB) caused by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) has resulted in tremendous losses and the death of millions of trees worldwide. CLas is transmitted by the Asian citrus psyllid Diaphorina citri. The closely-related bacteria 'Candidatus Liberibacter solanacearum' (CLso), associated with vegetative disorders in carrots, is transmitted by the carrot psyllid Bactericera trigonica.

View Article and Find Full Text PDF

Background: The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security.

View Article and Find Full Text PDF

Begomoviruses comprise an emerging and economically important group of plant viruses exclusively transmitted by the sweetpotato whitefly Bemisia tabaci in many regions of the world. The past twenty years have witnessed significant progress in studying the molecular interactions between members of this virus group and B. tabaci.

View Article and Find Full Text PDF

Unlabelled: Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted exclusively by the whitefly Bemisia tabaci in a persistent, circulative manner. Replication of TYLCV in its vector remains controversial, and thus far, the virus has been considered to be nonpropagative. Following 8 h of acquisition on TYLCV-infected tomato plants or purified virions and then transfer to non-TYLCV-host cotton plants, the amounts of virus inside whitefly adults significantly increased (>2-fold) during the first few days and then continuously decreased, as measured by the amounts of genes on both virus DNA strands.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components.

View Article and Find Full Text PDF

Background: Plant defensive metabolites such as nicotine can provide barriers to host-range expansion by generalist herbivores. Nicotine is one of the most abundant and toxic plant secondary metabolites in nature and is defined by high toxicity to plant-feeding insects. There is significant variation in nicotine tolerance among Bemisia tabaci (tobacco whitefly) isolates.

View Article and Find Full Text PDF

A new chemical compound was tested for its insecticidal activity against several major insect pests. The compound, called "flufenerim", has a core pyrimidine structure and an unknown mode of action and showed potent activity against the sweet potato whitefly Bemisia tabaci (Gennadius), the green peach aphid Myzus persicae (Sulzer), and the African cotton leafworm Spodoptera littoralis (Boisduval); however, it did not show any activity against two thrips species: western flower thrips Frankliniella occidentalis (Pergande) and tobacco thrips Thrips tabaci (Lindeman). The compound was relatively potent against the three tested pests and caused mortality rates that reached up to 100% at concentrations under 10 mg of active ingredient (ai) L(-1).

View Article and Find Full Text PDF

Tomato yellow leaf curl virus (TYLCV) (Geminiviridae: Begomovirus) is exclusively vectored by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). TYLCV transmission depends upon a 63-kDa GroEL protein produced by the vector's endosymbiotic bacteria. B.

View Article and Find Full Text PDF

Background: Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum.

View Article and Find Full Text PDF

1. Negative interspecific interactions, such as resource competition or reproductive interference, can lead to the displacement of species (species exclusion). 2.

View Article and Find Full Text PDF

The whitefly Bemisia tabaci (Gennadius) causes tremendous losses to agriculture by direct feeding on plants and by vectoring several families of plant viruses. The B. tabaci species complex comprises over 10 genetic groups (biotypes) that are well defined by DNA markers and biological characteristics.

View Article and Find Full Text PDF

Background: The presence of symbiotic microorganisms may influence an insect's ability to tolerate natural and artificial stress agents such as insecticides. The authors have previously shown that Rickettsia in the B biotype of the whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) increases this insect's susceptibility to several insecticidal compounds. This communication reports a comparison of the susceptibilities of three isofemale strains of the Q biotype of B.

View Article and Find Full Text PDF