Publications by authors named "Konstantinos Serelis"

Neural networks (NNs) have the ability to model a wide range of complex nonlinearities. A major disadvantage of NNs, however, is their instability, especially under conditions of sparse, noisy, and limited data sets. In this paper, different combining network methods are used to benefit from the existence of local minima and from the instabilities of NNs.

View Article and Find Full Text PDF

Various statistical models were developed for assessing airborne fluoride (F) levels in natural vegetation near an aluminum reduction plant using as predictor variables the distance from the emission source, the predominating wind, and characteristic topography-geomorphology parameters. Results revealed that F concentrations in vegetation showed a predictable response to both wind conditions and landscape features. The linear model was found to give good estimations, taking advantage of the relatively strong linear correlation between concentration and distance.

View Article and Find Full Text PDF