This article proposes a Workflow for Assessing Treatment effeCt Heterogeneity (WATCH) in clinical drug development targeted at clinical trial sponsors. WATCH is designed to address the challenges of investigating treatment effect heterogeneity (TEH) in randomized clinical trials, where sample size and multiplicity limit the reliability of findings. The proposed workflow includes four steps: analysis planning, initial data analysis and analysis dataset creation, TEH exploration, and multidisciplinary assessment.
View Article and Find Full Text PDFClinical trials are primarily conducted to estimate causal effects, but the data collected can also be invaluable for additional research, such as identifying prognostic measures of disease or biomarkers that predict treatment efficacy. However, these exploratory settings are prone to false discoveries (type-I errors) due to the multiple comparisons they entail. Unfortunately, many methods fail to address this issue, in part because the algorithms used are generally designed to optimize predictions and often only provide the measures used for variable selection, such as machine learning model importance scores, as a byproduct.
View Article and Find Full Text PDFThe identification and estimation of heterogeneous treatment effects in biomedical clinical trials are challenging, because trials are typically planned to assess the treatment effect in the overall trial population. Nevertheless, the identification of how the treatment effect may vary across subgroups is of major importance for drug development. In this work, we review some existing simulation work and perform a simulation study to evaluate recent methods for identifying and estimating the heterogeneous treatments effects using various metrics and scenarios relevant for drug development.
View Article and Find Full Text PDFObjective: Affective disorders are associated with atypical voice patterns; however, automated voice analyses suffer from small sample sizes and untested generalizability on external data. We investigated a generalizable approach to aid clinical evaluation of depression and remission from voice using transfer learning: We train machine learning models on easily accessible non-clinical datasets and test them on novel clinical data in a different language.
Methods: A Mixture of Experts machine learning model was trained to infer happy/sad emotional state using three publicly available emotional speech corpora in German and US English.
One of the key challenges of personalized medicine is to identify which patients will respond positively to a given treatment. The area of subgroup identification focuses on this challenge, that is, identifying groups of patients that experience desirable characteristics, such as an enhanced treatment effect. A crucial first step towards the subgroup identification is to identify the baseline variables (eg, biomarkers) that influence the treatment effect, which are known as predictive variables.
View Article and Find Full Text PDFPatients with Parkinson's disease (PD) have distinctive voice patterns, often perceived as expressing sad emotion. While this characteristic of Parkinsonian speech has been supported through the perspective of listeners, where both PD and healthy control (HC) subjects repeat the same speaking tasks, it has never been explored through a machine learning modelling approach. Our work provides an objective evaluation of this characteristic of the PD speech, by building a transfer learning system to assess how the PD pathology affects the sadness perception.
View Article and Find Full Text PDFMotivation: The identification of biomarkers to support decision-making is central to personalized medicine, in both clinical and research scenarios. The challenge can be seen in two halves: identifying predictive markers, which guide the development/use of tailored therapies; and identifying prognostic markers, which guide other aspects of care and clinical trial planning, i.e.
View Article and Find Full Text PDFWhat is the simplest thing you can do to solve a problem? In the context of semi-supervised feature selection, we tackle exactly this-how much we can gain from two simple strategies. If we have some binary labelled data and some unlabelled, we could assume the unlabelled data are all positives, or assume them all negatives. These minimalist, seemingly naive, approaches have not previously been studied in depth.
View Article and Find Full Text PDFStud Health Technol Inform
October 2017
We study information theoretic methods for ranking biomarkers. In clinical trials, there are two, closely related, types of biomarkers: predictive and prognostic, and disentangling them is a key challenge. Our first step is to phrase biomarker ranking in terms of optimizing an information theoretic quantity.
View Article and Find Full Text PDF