Publications by authors named "Konstantinos Plataniotis"

Reinforcement learning (RL) has garnered significant attention for developing decision-making agents that aim to maximize rewards, specified by an external supervisor, within fully observable environments. However, many real-world problems involve partial or noisy observations, where agents cannot access complete and accurate information about the environment. These problems are commonly formulated as partially observable Markov decision processes (POMDPs).

View Article and Find Full Text PDF

Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift.

View Article and Find Full Text PDF

Advancements in biotechnology and molecular communication have enabled the utilization of nanomachines in Wireless Body Area Networks (WBAN2) for applications such as drug delivery, cancer detection, and emergency rescue services. To study these networks effectively, it is essential to develop an ideal propagation model that includes the channel response between each pair of in-range nanomachines and accounts for the interference received at each receiver node. In this paper, we employ an advection-diffusion equation to obtain a deterministic channel matrix through a vascular WBAN2.

View Article and Find Full Text PDF

Stress is an inevitable part of modern life. While stress can negatively impact a person's life and health, positive and under-controlled stress can also enable people to generate creative solutions to problems encountered in their daily lives. Although it is hard to eliminate stress, we can learn to monitor and control its physical and psychological effects.

View Article and Find Full Text PDF

The main objective of this study is to develop a robust deep learning-based framework to distinguish COVID-19, Community-Acquired Pneumonia (CAP), and Normal cases based on volumetric chest CT scans, which are acquired in different imaging centers using different scanners and technical settings. We demonstrated that while our proposed model is trained on a relatively small dataset acquired from only one imaging center using a specific scanning protocol, it performs well on heterogeneous test sets obtained by multiple scanners using different technical parameters. We also showed that the model can be updated via an unsupervised approach to cope with the data shift between the train and test sets and enhance the robustness of the model upon receiving a new external dataset from a different center.

View Article and Find Full Text PDF

This article proposes the Bayesian surprise as the main methodology that drives the cognitive radar to estimate a target's future state (i.e., velocity, distance) from noisy measurements and execute a decision to minimize the estimation error over time.

View Article and Find Full Text PDF

Reverse transcription-polymerase chain reaction is currently the gold standard in COVID-19 diagnosis. It can, however, take days to provide the diagnosis, and false negative rate is relatively high. Imaging, in particular chest computed tomography (CT), can assist with diagnosis and assessment of this disease.

View Article and Find Full Text PDF

Novel Coronavirus disease (COVID-19) is a highly contagious respiratory infection that has had devastating effects on the world. Recently, new COVID-19 variants are emerging making the situation more challenging and threatening. Evaluation and quantification of COVID-19 lung abnormalities based on chest Computed Tomography (CT) images can help determining the disease stage, efficiently allocating limited healthcare resources, and making informed treatment decisions.

View Article and Find Full Text PDF

Development of distributed Multi-Agent Reinforcement Learning (MARL) algorithms has attracted an increasing surge of interest lately. Generally speaking, conventional Model-Based (MB) or Model-Free (MF) RL algorithms are not directly applicable to the MARL problems due to utilization of a fixed reward model for learning the underlying value function. While Deep Neural Network (DNN)-based solutions perform well, they are still prone to overfitting, high sensitivity to parameter selection, and sample inefficiency.

View Article and Find Full Text PDF

Symbiotic autonomous systems (SAS) are advanced intelligent and cognitive systems that exhibit autonomous collective intelligence enabled by coherent symbiosis of human-machine interactions in hybrid societies. Basic research in the emerging field of SAS has triggered advanced general-AI technologies that either function without human intervention or synergize humans and intelligent machines in coherent cognitive systems. This work presents a theoretical framework of SAS underpinned by the latest advances in intelligence, cognition, computer, and system sciences.

View Article and Find Full Text PDF

The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading and causing hundreds of thousands of deaths around the world as of its first emergence in late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures and arises the need to allocate medical equipment and resources more efficiently. The early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-COVID cases, which will be helpful for health care authorities to optimize resource allocation plans and early prevention of the disease.

View Article and Find Full Text PDF

The quality and safety of food is an important issue to the whole society, since it is at the basis of human health, social development and stability. Ensuring food quality and safety is a complex process, and all stages of food processing must be considered, from cultivating, harvesting and storage to preparation and consumption. However, these processes are often labour-intensive.

View Article and Find Full Text PDF

Novel Coronavirus (COVID-19) has drastically overwhelmed more than 200 countries affecting millions and claiming almost 2 million lives, since its emergence in late 2019. This highly contagious disease can easily spread, and if not controlled in a timely fashion, can rapidly incapacitate healthcare systems. The current standard diagnosis method, the Reverse Transcription Polymerase Chain Reaction (RT- PCR), is time consuming, and subject to low sensitivity.

View Article and Find Full Text PDF

While contact tracing is of paramount importance in preventing the spreading of infectious diseases, manual contact tracing is inefficient and time consuming as those in close contact with infected individuals are informed hours, if not days, later. This article proposes a smart contact tracing (SCT) system utilizing the smartphone's Bluetooth low energy signals and machine learning classifiers to automatically detect those possible contacts to infectious individuals. SCT's contribution is two-fold: a) classification of the user's contact as high/low-risk using precise proximity sensing, and b) user anonymity using a privacy-preserving communication protocol.

View Article and Find Full Text PDF

Deep learning has achieved a great success in natural image classification. To overcome data-scarcity in computational pathology, recent studies exploit transfer learning to reuse knowledge gained from natural images in pathology image analysis, aiming to build effective pathology image diagnosis models. Since transferability of knowledge heavily depends on the similarity of the original and target tasks, significant differences in image content and statistics between pathology images and natural images raise the questions: how much knowledge is transferable? Is the transferred information equally contributed by pre-trained layers? If not, is there a sweet spot in transfer learning that balances transferred model's complexity and performance? To answer these questions, this paper proposes a framework to quantify knowledge gain by a particular layer, conducts an empirical investigation in pathology image centered transfer learning, and reports some interesting observations.

View Article and Find Full Text PDF

Brain tumor is among the deadliest cancers, whose effective treatment is partially dependent on the accurate diagnosis of the tumor type. Convolutional neural networks (CNNs), which have been the state-of-the-art in brain tumor classification, fail to identify the spatial relations in the image. Capsule networks, proposed to overcome this drawback, are sensitive to miscellaneous backgrounds and cannot manage to focus on the main target.

View Article and Find Full Text PDF

Novel Coronavirus disease (COVID-19) has abruptly and undoubtedly changed the world as we know it at the end of the 2nd decade of the 21st century. COVID-19 is extremely contagious and quickly spreading globally making its early diagnosis of paramount importance. Early diagnosis of COVID-19 enables health care professionals and government authorities to break the chain of transition and flatten the epidemic curve.

View Article and Find Full Text PDF

Hand-crafted radiomics has been used for developing models in order to predict time-to-event clinical outcomes in patients with lung cancer. Hand-crafted features, however, are pre-defined and extracted without taking the desired target into account. Furthermore, accurate segmentation of the tumor is required for development of a reliable predictive model, which may be objective and a time-consuming task.

View Article and Find Full Text PDF

Despite the advances in automatic lung cancer malignancy prediction, achieving high accuracy remains challenging. Existing solutions are mostly based on Convolutional Neural Networks (CNNs), which require a large amount of training data. Most of the developed CNN models are based only on the main nodule region, without considering the surrounding tissues.

View Article and Find Full Text PDF

Survival and life quality of breast cancer patients could be improved by more aggressive chemotherapy for those at high metastasis risk and less intense treatments for low-risk patients. Such personalized treatment cannot be currently achieved due to the insufficient reliability of metastasis risk prognosis. The purpose of this study was therefore, to identify novel histopathological prognostic markers of metastasis risk through exhaustive computational image analysis of 80 size and shape subsets of epithelial clusters in breast tumors.

View Article and Find Full Text PDF

In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality.

View Article and Find Full Text PDF

One of the challenges facing the adoption of digital pathology workflows for clinical use is the need for automated quality control. As the scanners sometimes determine focus inaccurately, the resultant image blur deteriorates the scanned slide to the point of being unusable. Also, the scanned slide images tend to be extremely large when scanned at greater or equal 20X image resolution.

View Article and Find Full Text PDF

In this paper, we propose a novel design of Human Visual System (HVS) response in a convolutional filter form to decompose meaningful features that are closely tied with image sharpness level. No-reference (NR) Image sharpness assessment (ISA) techniques have emerged as the standard of image quality assessment in diverse imaging applications. Despite their high correlation with subjective scoring, they are challenging for practical considerations due to high computational cost and lack of scalability across different image blurs.

View Article and Find Full Text PDF

Pathology images are color in nature due to the use of chemical staining in biopsy examination. Aware of the high color diagnosticity in pathology images, this work introduces a compact rotation-invariant texture descriptor, named quantized diagnostic counter-color pattern (QDCP), for digital pathology image understanding. On the basis of color similarity quantified by the inner product of unit-length color vectors, local counter-color textons are indexed first.

View Article and Find Full Text PDF