Introduction: Breast and prostate cancer survivors can experience impaired quality of life (QoL) in several QoL domains. The current strategy to support cancer survivors with impaired QoL is suboptimal, leading to unmet patient needs. ASCAPE aims to provide personalized- and artificial intelligence (AI)-based predictions for QoL issues in breast- and prostate cancer patients as well as to suggest potential interventions to their physicians to offer a more modern and holistic approach on cancer rehabilitation.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a severe, mostly fatal hematopoietic malignancy. We were interested in whether transcriptomic-based machine learning could predict AML status without requiring expert input. Using 12,029 samples from 105 different studies, we present a large-scale study of machine learning-based prediction of AML in which we address key questions relating to the combination of machine learning and transcriptomics and their practical use.
View Article and Find Full Text PDFAn important topic when estimating the effect of air pollutants on human health is choosing the best method to control for seasonal patterns and time varying confounders, such as temperature and humidity. Semi-parametric Poisson time-series models include smooth functions of calendar time and weather effects to control for potential confounders. Case-crossover (CC) approaches are considered efficient alternatives that control seasonal confounding by design and allow inclusion of smooth functions of weather confounders through their equivalent Poisson representations.
View Article and Find Full Text PDF