Publications by authors named "Konstantinos Kamnitsas"

This paper presents an effective and general data augmentation framework for medical image segmentation. We adopt a computationally efficient and data-efficient gradient-based meta-learning scheme to explicitly align the distribution of training and validation data which is used as a proxy for unseen test data. We improve the current data augmentation strategies with two core designs.

View Article and Find Full Text PDF

Background samples provide key contextual information for segmenting regions of interest (ROIs). However, they always cover a diverse set of structures, causing difficulties for the segmentation model to learn good decision boundaries with high sensitivity and precision. The issue concerns the highly heterogeneous nature of the background class, resulting in multi-modal distributions.

View Article and Find Full Text PDF
Article Synopsis
  • Machine learning can work well, but it often struggles to make accurate predictions on new data, which is called out-of-sample generalizability.
  • To solve this problem, researchers are using a method called Federated ML that allows computers to share information about how well they're learning without actually sharing the data itself.
  • In a big study with 71 locations around the world, scientists created a model to help detect brain tumors more accurately, showing a significant improvement compared to older methods and hoping to help with rare illnesses and data sharing in healthcare.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the connection between serum biomarker levels and different types and volumes of lesions seen in CT scans after traumatic brain injury (TBI).
  • Researchers analyzed blood samples from 2,869 TBI patients (68% male, median age 49) collected within 24 hours post-injury, measuring six specific biomarkers.
  • Findings indicated that patients with severe diffuse injuries had higher biomarker levels, especially with greater injury volumes, while specific combinations of injuries like DAI+IVH showed elevated biomarkers compared to others like EDH.
View Article and Find Full Text PDF

Class imbalance poses a challenge for developing unbiased, accurate predictive models. In particular, in image segmentation neural networks may overfit to the foreground samples from small structures, which are often heavily under-represented in the training set, leading to poor generalization. In this study, we provide new insights on the problem of overfitting under class imbalance by inspecting the network behavior.

View Article and Find Full Text PDF

Background: CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.

View Article and Find Full Text PDF
Article Synopsis
  • * A database of 741 MRI exams from 729 unique patients was compiled, where 641 exams were used for training the DL system, and 100 were set aside for testing through a blinded assessment platform.
  • * Neuroradiologists rated the mean scores of DL segmentations higher than those from technicians (7.31 vs 6.97), and the DL method demonstrated a strong overlap in segmentations with a Dice coefficient of 0.87, indicating its potential to outperform human segmentations.
View Article and Find Full Text PDF

Quantification of anatomical shape changes currently relies on scalar global indexes which are largely insensitive to regional or asymmetric modifications. Accurate assessment of pathology-driven anatomical remodeling is a crucial step for the diagnosis and treatment of many conditions. Deep learning approaches have recently achieved wide success in the analysis of medical images, but they lack interpretability in the feature extraction and decision processes.

View Article and Find Full Text PDF

Failure of cerebral autoregulation has been linked to unfavorable outcome after traumatic brain injury (TBI). Preliminary evidence from a small, retrospective, single-center analysis suggests that autoregulatory dysfunction may be associated with traumatic lesion expansion, particularly for pericontusional edema. The goal of this study was to further explore these associations using prospective, multi-center data from the Collaborative European Neurotrauma Effectiveness Research in TBI (CENTER-TBI) and to further explore the relationship between autoregulatory failure, lesion progression, and patient outcome.

View Article and Find Full Text PDF

Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2).

View Article and Find Full Text PDF

Automatic detection of anatomical landmarks is an important step for a wide range of applications in medical image analysis. Manual annotation of landmarks is a tedious task and prone to observer errors. In this paper, we evaluate novel deep reinforcement learning (RL) strategies to train agents that can precisely and robustly localize target landmarks in medical scans.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI.

View Article and Find Full Text PDF

Incorporation of prior knowledge about organ shape and location is key to improve performance of image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts due to limitations in image acquisition. The highly constrained nature of anatomical objects can be well captured with learning-based techniques.

View Article and Find Full Text PDF

Purpose: As part of a program to implement automatic lesion detection methods for whole body magnetic resonance imaging (MRI) in oncology, we have developed, evaluated, and compared three algorithms for fully automatic, multiorgan segmentation in healthy volunteers.

Methods: The first algorithm is based on classification forests (CFs), the second is based on 3D convolutional neural networks (CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We examined data from 51 healthy volunteers, scanned prospectively with a standardized, multiparametric whole body MRI protocol at 1.

View Article and Find Full Text PDF

Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks.

View Article and Find Full Text PDF

When integrating computational tools, such as automatic segmentation, into clinical practice, it is of utmost importance to be able to assess the level of accuracy on new data and, in particular, to detect when an automatic method fails. However, this is difficult to achieve due to the absence of ground truth. Segmentation accuracy on clinical data might be different from what is found through cross validation, because validation data are often used during incremental method development, which can lead to overfitting and unrealistic performance expectations.

View Article and Find Full Text PDF

Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonance Imaging (MRI). In this context, having automatic segmentations to estimate the size and the distribution of the pathological tissue would be advantageous towards tumor characterization.

View Article and Find Full Text PDF

We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth analysis of the limitations of current networks proposed for similar applications. To overcome the computational burden of processing 3D medical scans, we have devised an efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data.

View Article and Find Full Text PDF

In this paper, we propose DeepCut, a method to obtain pixelwise object segmentations given an image dataset labelled weak annotations, in our case bounding boxes. It extends the approach of the well-known GrabCut [1] method to include machine learning by training a neural network classifier from bounding box annotations. We formulate the problem as an energy minimisation problem over a densely-connected conditional random field and iteratively update the training targets to obtain pixelwise object segmentations.

View Article and Find Full Text PDF

Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference.

View Article and Find Full Text PDF