The emerging field of senolytics is centered on eliminating senescent cells to block their contribution to the progression of age-related diseases, including cancer, and to facilitate healthy aging. Enhancing the selectivity of senolytic treatments toward senescent cells stands to reduce the adverse effects associated with existing senolytic interventions. Taking advantage of lipofuscin accumulation in senescent cells, we describe here the development of a highly efficient senolytic platform consisting of a lipofuscin-binding domain scaffold, which can be conjugated with a senolytic drug via an ester bond.
View Article and Find Full Text PDFCells
November 2024
Giant cell arteritis (GCA) is an autoimmune/autoinflammatory disease affecting large vessels in patients over 50 years old. The disease presents as an acute inflammatory response with two phenotypes, cranial GCA and large-vessel vasculitis (LV)-GCA, involving the thoracic aorta and its branches. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) is among the imaging techniques contributing to diagnosing patients with systemic disease.
View Article and Find Full Text PDFGiant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively.
View Article and Find Full Text PDFIdentification and isolation of senescent cells is challenging, rendering their detailed analysis an unmet need. We describe a precise one-step protocol to fluorescently label senescent cells, for flow cytometry and fluorescence microscopy, implementing a fluorophore-conjugated Sudan Black-B analog, GLF16. Also, a micelle-based approach allows identification of senescent cells in vivo and in vitro, enabling live-cell sorting for downstream analyses and live in vivo tracking.
View Article and Find Full Text PDFObjectives: Age is the strongest risk factor of giant cell arteritis (GCA), implying a possible pathogenetic role of cellular senescence. To address this question, we applied an established senescence specific multimarker algorithm in temporal artery biopsies (TABs) of GCA patients.
Methods: 75(+) TABs from GCA patients, 22(-) TABs from polymyalgia rheumatica (PMR) patients and 10(-) TABs from non-GCA/non-PMR patients were retrospectively retrieved and analysed.
Cellular senescence is a stress-response mechanism implicated in various physiological processes, diseases, and aging. Current detection approaches have partially addressed the issue of senescent cell identification in clinical specimens. Effective methodologies enabling precise isolation or live tracking of senescent cells are still lacking.
View Article and Find Full Text PDFThe enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion.
View Article and Find Full Text PDFIntroduction: Cat scratch disease (CSD) is the most common cause of bacterial infectious lymphadenopathy, especially in children, but its diagnosis still remains challenging. Serological assays are widely applied due to their simplicity and the non-invasive sampling. However, these techniques present several limitations, including not well-defined antigen preparation, assay conditions and cutoff titers, severe cross-reactions with other species and organisms, and the notably ranging seroprevalence in the normal population.
View Article and Find Full Text PDFClin Immunol
February 2023
Kruppel-like factor 2 (KLF2) has been linked with fibrosis and neutrophil-associated thromboinflammation; however, its role in COVID-19 remains elusive. We investigated the effect of disease microenvironment on the fibrotic potential of human lung fibroblasts (LFs) and its association with KLF2 expression. LFs stimulated with plasma from severe COVID-19 patients down-regulated KLF2 expression at mRNA/protein and functional level acquiring a pre-fibrotic phenotype, as indicated by increased CCN2/collagen levels.
View Article and Find Full Text PDFBackground: During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown.
View Article and Find Full Text PDFObjectives: To explore the presence of neutrophil extracellular traps (NETs) in inflamed temporal artery biopsies (TABs) of patients with GCA.
Methods: Ten patients with GCA [five with limited and five with associated generalized vascular involvement, as defined by 18F-fluorodeoxyglucose PET with CT (PET/CT)] and eight with PMR were studied. The presence, location, quantitation and decoration of NETs with IL-6, IL-1β and IL-17A were assessed in TABs at the time of disease diagnosis by tissue immunofluorescence and confocal microscopy.
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal hematopoietic stem (HSCs) and/or progenitor cells disorders. The established dependence of MDS progenitors on the hypoxic bone marrow (BM) microenvironment turned scientific interests to the transcription factor hypoxia-inducible factor 1 (HIF-1). HIF-1 facilitates quiescence maintenance and regulates differentiation by manipulating HSCs metabolism, being thus an appealing research target.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) encompass a very heterogeneous group of clonal hematopoietic stem cell differentiation disorders with malignant potential and an elusive pathobiology. Given the central role of metabolism in effective differentiation, we performed an untargeted metabolomic analysis of differentiating myeloid lineage cells from MDS bone marrow aspirates that exhibited <5% (G1) or ≥5% (G2) blasts, in order to delineate its role in MDS severity and malignant potential. Bone marrow aspirates were collected from 14 previously untreated MDS patients (G1, = 10 and G2, = 4) and age matched controls ( = 5).
View Article and Find Full Text PDFExcessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential.
View Article and Find Full Text PDFBackground/aims: We assessed the levels of autophagy and mitophagy, that are linked to cancer development and drug resistance, in well differentiated pancreatic neuroendocrine neoplasms (PanNENs) and correlated them with clinico-pathological parameters.
Methods: Fluorescent immunostaining for the autophagy markers LC3Β and p62/or LAMP1 was performed on 22 PanNENs and 11 controls of normal pancreatic tissues and validated through Western blotting. Autophagy quantitative scoring was generated for LC3B-positive puncta and analysed in relation to clinico-pathological parameters.
Objectives: The release of neutrophil extracellular traps (NETs) represents a novel neutrophil effector function in systemic lupus erythematosus (SLE) pathogenesis. However, the molecular mechanism underlying NET release and how NETs mediate end-organ injury in SLE remain elusive.
Methods: NET formation and NET-related proteins were assessed in the peripheral blood and biopsies from discoid lupus and proliferative nephritis, using immunofluorescence, immunoblotting, quantitative PCR and ELISA.
Infiltration of neutrophils into colonic mucosa has been associated with the severity of ulcerative colitis (UC). We investigated the effect of disease microenvironment on the release of neutrophil extracellular traps (NETs) as well as the involved mechanisms in NETosis and whether certain NET proteins are correlated with disease phenotype. Peripheral blood neutrophils, sera, and colonic tissue were collected from treatment-naive and mesalazine-treated patients with active UC, treatment-naive patients with active Crohn's disease, patients suffering from infectious colitis, or healthy individuals (controls).
View Article and Find Full Text PDFInflammation is a hallmark of colorectal cancer (CRC). Neutrophils are well-known mediators in tumor biology but their role in solid tumors, including CRC, was redefined by neutrophil extracellular traps (NETs). Given that it was recently demonstrated that platelet-derived polyP primes neutrophils to release NETs, we examined surgical specimens from CRC to investigate the presence of polyP, as a possible NET inducer.
View Article and Find Full Text PDFNeutrophils and neutrophil-released meshwork structures termed neutrophil extracellular traps (NETs) are major mediators of thromboinflammation and emerging targets for therapy, yet the mechanisms and pathways that control the role of neutrophils in thromboinflammation remain poorly understood. Here, we explored the role of IFN-λ1/IL-29, a major antiviral cytokine recently shown to suppress the neutrophil migratory capacity, in prothrombotic and proNETotic functions of neutrophils. In an ex vivo human experimental setting of acute ST-segment elevation myocardial infarction (STEMI), we show that IFN-λ1/IL-29 hinders NET release and diminishes the amount of cytoplasmic TF in neutrophils.
View Article and Find Full Text PDFJ Allergy Clin Immunol
November 2017
Background: Familial Mediterranean fever (FMF) is an IL-1β-dependent autoinflammatory disease caused by mutations of Mediterranean fever (MEFV) encoding pyrin and characterized by inflammatory attacks induced by physical or psychological stress.
Objective: We investigated the underlying mechanism that links stress-induced inflammatory attacks with neutrophil activation and release of IL-1β-bearing neutrophil extracellular traps (NETs) in patients with FMF.
Methods: RNA sequencing was performed in peripheral neutrophils from 3 patients with FMF isolated both during attacks and remission, 8 patients in remission, and 8 healthy subjects.
Aberrant formation of neutrophil extracellular traps (NETs) is a key feature in rheumatoid arthritis (RA) and plays a pivotal role in disease pathogenesis. However, the mechanism through which NETs shape the autoimmune response in RA remains elusive. In this study, we demonstrate that inhibition of peptidylarginine deiminases activity in collagen-induced arthritis (CIA) mouse model significantly reduces NET formation, attenuates clinical disease activity, and prevents joint destruction.
View Article and Find Full Text PDFBackground: The role of neutrophils in tumour biology is largely unresolved. Recently, independent studies indicated either neutrophil extracellular traps (NETs) or Tissue Factor (TF) involvement in cancer biology and associated thrombosis. However, their individual or combined role in colonic adenocarcinoma is still unexplored.
View Article and Find Full Text PDFMacrolide antibiotics have been shown to act as immunomodulatory molecules in various immune cells. However, their effect on neutrophils has not been extensively investigated. In this study, we investigated the role of macrolide antibiotics in the generation of neutrophil extracellular traps (NETs).
View Article and Find Full Text PDFIntroduction: Interleukin-1β (IL-1β) is a major inflammatory cytokine, produced predominantly by innate immune cells through NLRP3-inflammasome activation. Both intrinsic and extrinsic danger signals may activate NLRP3. Genetic variations in NLRP3-inflammasome components have been reported to influence rheumatoid arthritis (RA) susceptibility and severity.
View Article and Find Full Text PDF