Viruses
November 2024
Amanda Psyrri was not included as an author in the original publication [...
View Article and Find Full Text PDFHuman Papillomaviruses have been associated with the occurrence of cervical cancer, the fourth most common cancer that affects women globally, while 70% of cases are caused by infection with the high-risk types HPV16 and HPV18. The integration of these viruses' oncogenes and into the host's genome affects a multitude of cellular functions and alters the expression of molecules. The aim of this study was to investigate how these oncogenes contribute to the expression of immune system control molecules, using cell lines with integrated HPV16 genome, before and after knocking out viral gene using the CRISPR/Cas9 system, delivered with a lentiviral vector.
View Article and Find Full Text PDFIn the last decade, there has been a notable advancement in diverse bioreactor types catering to various applications. However, conventional bioreactors often exhibit bulkiness and high costs, making them less accessible to many researchers and laboratory facilities. In light of these challenges, this article aims to introduce and evaluate the development of a do-it-yourself (DIY) 3D printed smart bioreactor, offering a cost-effective and user-friendly solution for the proliferation of various bioentities, including bacteria and human organoids, among others.
View Article and Find Full Text PDFCardiovascular diseases (CVD) are the leading cause of morbidity and mortality. Interestingly, male and female patients with CVD exhibit distinct epidemiological and pathophysiological characteristics, implying a potentially important role for primary and secondary sex determination factors in heart development, aging, disease and therapeutic responses. Here, we provide a concise review of the field and discuss current gaps in knowledge as a step towards elucidating the "sex determination-heart axis".
View Article and Find Full Text PDFCurrent progress and challenges in understanding the molecular and cellular mechanisms of cardiomyocyte embryonic development and regeneration are reviewed in our present work. Three major topics are critically discussed: how do cardiomyocytes form in the embryo? What is the adult origin of the cells that regenerate cardiomyocytes in animal models with adult heart regeneration capabilities? Can the promise of therapeutic cardiomyocyte regeneration be realized in humans? In the first topic, we highlight current advances in understanding the developmental biology of cardiomyocytes, with emphasis on the regulative capabilities of the early embryo during specification and allocation of the cardiomyoblasts that produce the primordial heart. We place further emphasis on trabecular cardiomyocyte development from late cardiomyoblasts, neural crest cells and primordial cardiomyocytes, and their critical role in the clonal growth of the compact/septal and cortical cardiomyocyte layers in the mammalian embryo and adult zebrafish, respectively.
View Article and Find Full Text PDFIntroduction: Induced pluripotent stem cells (iPSCs) provide a model of cardiomyocyte (CM) maturation. Nitric oxide signaling promotes CM differentiation and maturation, although the mechanisms remain controversial.
Aim: The study tested the hypothesis that in the absence of S-nitrosoglutathione reductase (GSNOR), a denitrosylase regulating protein S-nitrosylation, the resultant increased S-nitrosylation accelerates the differentiation and maturation of iPSC-derived cardiomyocytes (CMs).
Background: Patients with chronic kidney disease (CKD) and coincident heart failure with preserved ejection fraction (HFpEF) may constitute a distinct HFpEF phenotype. Osteopontin (OPN) is a biomarker of HFpEF and predictive of disease outcome. We recently reported that OPN blockade reversed hypertension, mitochondrial dysfunction, and kidney failure in Col4a3 mice, a model of human Alport syndrome.
View Article and Find Full Text PDFRationale: Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear.
Objective: We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry.
Background: Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) differ in histopathology and prognosis. Although transendocardial delivery of mesenchymal stem cells is safe and provides cardiovascular benefits in both, a comparison of mesenchymal stem cell efficacy in ICM versus DCM has not been done.
Methods And Results: We conducted a subanalysis of 3 single-center, randomized, and blinded clinical trials: (1) TAC-HFT (Transendocardial Autologous Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells in Ischemic Heart Failure Trial); (2) POSEIDON (A Phase I/II, Randomized Pilot Study of the Comparative Safety and Efficacy of Transendocardial Injection of Autologous Mesenchymal Stem Cells Versus Allogeneic Mesenchymal Stem Cells in Patients With Chronic Ischemic Left Ventricular Dysfunction Secondary to Myocardial Infarction); and (3) POSEIDON-DCM (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy).
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies.
View Article and Find Full Text PDFA variety of approaches have been developed for the derivation of hepatocyte-like cells from pluripotent stem cells. Currently, most of these strategies employ step-wise differentiation approaches with recombinant growth-factors or small-molecule analogs to recapitulate developmental signaling pathways. Here, we tested the efficacy of a small-molecule based differentiation protocol for the generation of hepatocyte-like cells from human pluripotent stem cells.
View Article and Find Full Text PDFMicrogravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKit, Isl1nLacZ, and Wnt1-Cre reporter alleles.
View Article and Find Full Text PDFProgress in cell therapy for retinal disorders has been challenging. Recognized retinal progenitors are a heterogeneous population of cells that lack surface markers for the isolation of live cells for clinical implementation. In the present application, our objective was to use the stem cell factor receptor c-Kit (CD117), a surface marker, to isolate and evaluate a distinct progenitor cell population from retinas of postnatal and adult mice.
View Article and Find Full Text PDFBackground: Pim1 kinase plays an important role in cell division, survival, and commitment of precursor cells towards a myocardial lineage, and overexpression of Pim1 in ckit cardiac stem cells (CSCs) enhances their cardioreparative properties.
Objectives: The authors sought to validate the effect of Pim1-modified CSCs in a translationally relevant large animal preclinical model of myocardial infarction (MI).
Methods: Human cardiac stem cells (hCSCs, n = 10), hckit CSCs overexpressing Pim1 (Pim1; n = 9), or placebo (n = 10) were delivered by intramyocardial injection to immunosuppressed Yorkshire swine (n = 29) 2 weeks after MI.
Background: Although human mesenchymal stem cells (hMSCs) have been tested in ischemic cardiomyopathy, few studies exist in chronic nonischemic dilated cardiomyopathy (NIDCM).
Objectives: The authors conducted a randomized comparison of safety and efficacy of autologous (auto) versus allogeneic (allo) bone marrow-derived hMSCs in NIDCM.
Methods: Thirty-seven patients were randomized to either allo- or auto-hMSCs in a 1:1 ratio.
Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair.
View Article and Find Full Text PDFRationale: Culture-expanded cells originating from cardiac tissue that express the cell surface receptor cKit are undergoing clinical testing as a cell source for heart failure and congenital heart disease. Although accumulating data support that mesenchymal stem cells (MSCs) enhance the efficacy of cardiac cKit(+) cells (CSCs), the underlying mechanism for this synergistic effect remains incompletely understood.
Objective: To test the hypothesis that MSCs stimulate endogenous CSCs to proliferate, migrate, and differentiate via the SDF1/CXCR4 and stem cell factor/cKit pathways.
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions.
View Article and Find Full Text PDFAfter 2 recent genetic studies in mice addressing the developmental origins and regenerative activity of cardiac cKit+ cells, 2 additional reports by Sultana et al and Liu et al provide further information on the expression of cKit in the embryonic and adult hearts. Here, we synthesize the findings from the 4 distinct cKit models to gain insights into the biology of this important cell type.
View Article and Find Full Text PDFBackground: Both bone marrow-derived mesenchymal stem cells (MSCs) and c-kit(+) cardiac stem cells (CSCs) improve left ventricular remodeling in porcine models and clinical trials. Using xenogeneic (human) cells in immunosuppressed animals with acute ischemic heart disease, we previously showed that these 2 cell types act synergistically.
Objectives: To more accurately model clinical applications for heart failure, this study tested whether the combination of autologous MSCs and CSCs produce greater improvement in cardiac performance than MSCs alone in a nonimmunosuppressed porcine model of chronic ischemic cardiomyopathy.
The degree to which cKit-expressing progenitors generate cardiomyocytes in the heart is controversial. Genetic fate-mapping studies suggest minimal contribution; however, whether or not minimal contribution reflects minimal cardiomyogenic capacity is unclear because the embryonic origin and role in cardiogenesis of these progenitors remain elusive. Using high-resolution genetic fate-mapping approaches with cKit(CreERT2/+) and Wnt1::Flpe mouse lines, we show that cKit delineates cardiac neural crest progenitors (CNC(kit)).
View Article and Find Full Text PDF