This review summarizes the current state of research aiming at a description of the global heliosphere using both analytical and numerical modeling efforts, particularly in view of the overall plasma/neutral flow and magnetic field structure, and its relation to energetic neutral atoms. Being part of a larger volume on current heliospheric research, it also lays out a number of key concepts and describes several classic, though still relevant early works on the topic. Regarding numerical simulations, emphasis is put on magnetohydrodynamic (MHD), multi-fluid, kinetic-MHD, and hybrid modeling frameworks.
View Article and Find Full Text PDFJupiter hosts the most hazardous radiation belts of our solar system that, besides electrons and protons, trap an undetermined mix of heavy ions. The details of this mix are critical to resolve because they can reveal the role of Jupiter’s moons relative to other less explored energetic ion sources. Here, we show that with increasing energy and in the vicinity of Jupiter’s moon Amalthea, the belts’ ion composition transitions from sulfur- to oxygen-dominated due to a local source of ≳50 MeV/nucleon oxygen.
View Article and Find Full Text PDF