Publications by authors named "Konstantinos Dassios"

Superlubricity, the tribological regime where the coefficient of friction between two sliding surfaces almost vanishes, is currently being investigated as a viable route towards the energy efficiency envisioned by major long-term strategies for a sustainable future. This current study provides new insights towards the development of self-lubricating systems by material and topological design, systems which tend to exhibit near-superlubric tribological performance, by reporting the synergistic effect of selective surface patterning and presence of carbon micro/nano-fillers on the frictional coefficients of additively manufactured structures. Geometric and biomimetic surface patterns were prepared by fused deposition modelling (FDM), using printing filaments of a polymeric matrix infused with graphene nanoplatelets (GNPs) and carbon fibers (C).

View Article and Find Full Text PDF

This study investigated the innovative use of magnetoelastic sensors to detect the formation of single cracks in cement beams under bending vibrations. The detection method involved monitoring changes in the bending mode spectrum when a crack was introduced. The sensors, functioning as strain sensors, were placed on the beams, and their signals were detected non-invasively using a nearby detection coil.

View Article and Find Full Text PDF

Cloaking against electromagnetic detection is a well-researched topic; yet achieving multispectral camouflage over a wide temperature range remains challenging. Herein, an orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with a conformal MXene coating (M@SiOC) is proposed to achieve wide-temperature-range microwave/infrared/visible-light-compatible camouflage. Firstly, the combination of coordinate transformation and genetic algorithm endows the GGS architecture with optimal orientation and gradient, allowing superior microwave blackbody-like behavior.

View Article and Find Full Text PDF

Ultrathin carbon nanomembranes (CNMs) are two-dimensional materials (2DM) of a few nm thickness with sub-nm intrinsic pores that mimic the biofiltration membranes found in nature. They enable highly selective, permeable, and energy-efficient water separation and can be produced at large scales on porous substrates with tuned properties. The present work reports the mechanical performance of such CNMs produced by p-nitrobiphenyl phosphonic acid (NBPS) or polyvinylbiphenyl (PVBP) and their composite membranes of microporous supporting substrates, which constitute indispensable information for ensuring their mechanical stability during operation.

View Article and Find Full Text PDF

Recent findings have brought forward the potential of carbon nano-species, especially nanotubes and graphene, to impart exceptional multifunctional potential to cement, offering simultaneous enhancement of mechanical, fracture mechanical and electrical properties. While available knowledge on the topic is still limited, there is a complete absence of direct comparisons of the potential of the nano-species to improve strength and toughness and provide multifunctionality to the mortars. The study offers a comprehensive overview of these potentials, for mortars modified with pure graphene nanoplatelets and carbon nanotubes at consistent, directly comparable, concentrations up to 1.

View Article and Find Full Text PDF

The rapid development of three-dimensional (3D) printing technology opens great opportunities for the design of various multiscale lubrication structures. 3D printing allows high customization of arbitrary complex structures and rapid prototyping of objects, which provides an avenue to achieve effective lubrication. Current experimental observations on superlubricity are limited to atomically smooth clean surfaces, extreme operating conditions, and nano- or microscales.

View Article and Find Full Text PDF

Τhe present study investigates the pore structure and transport properties of carbon nanotube-modified cementitious mortars after exposure to freeze-thaw cycles and immersion to sulfate ion solution (sulfate attack) and compares them to those of un-exposed mortars. The effect of parameters related to carbon nanotube content (within the range of 0.2-0.

View Article and Find Full Text PDF

The current necessity of the scientific and industrial community, for reduction of aircraft maintenance cost and duration, prioritizes the need for development of innovative nondestructive techniques enabling fast and reliable defect detection on aircraft fuselage and wing skin parts. Herein, a new low-cost thermographic strategy, termed Pulsed Phase-Informed Lock-in Thermography, operating on the synergy of two independent, active infrared thermography techniques, is reported for the fast and quantitative assessment of superficial and subsurface damage in aircraft-grade composite materials. The two-step approach relies on the fast, initial qualitative assessment, by Pulsed Phase Thermography, of defect location and the identification of the optimal material-intrinsic frequency, over which lock-in thermography is subsequently applied for the quantification of the damage's dilatational characteristics.

View Article and Find Full Text PDF

This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally.

View Article and Find Full Text PDF

Conventionally, the alveolar surface area (S) has been measured by using post-mortem morphometry. Such studies have highlighted that S in prematurely-born infants is markedly smaller when compared to term-born infants as a result of postnatal impairment or arrest of alveolar development. We herein explore how, non-invasive measurements of the ventilation/perfusion ratio (V/Q) can be used to estimate S in prematurely-born surviving, convalescent infants.

View Article and Find Full Text PDF

Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue.

View Article and Find Full Text PDF