Publications by authors named "Konstantinos Chrissafis"

This research paper highlights the preparation and characterisation of high-density polyethylene (HDPE)/tannic acid (TA) composites, designed to confer antioxidant properties to HDPE, valorising a biobased filler. Indeed, tannic acid is a natural polyphenol, demonstrating, among others, strong antioxidation properties. Using a melt-mixing process, HDPE/TA composites containing various amounts of TA, ranging between 1 and 20 wt%, were prepared, and analyses on their structural, thermal, mechanical, as well as antioxidant properties were conducted.

View Article and Find Full Text PDF

A novel nanocomposite consisting of FeO-loaded tin oxyhydroxy-chloride is demonstrated as an efficient adsorbent for the removal of hexavalent chromium in compliance to the new drinking water regulation. This study introduces a continuous-flow production of the nanocomposite through the separate synthesis of (i) 40 nm FeO nanoparticles and (ii) multilayered spherical arrangements of a tin hydroxy-chloride identified as abhurite, before the application of a wet-blending process. The homogeneous distribution of FeO nanoparticles on the abhurite's morphology, features nanocomposite with magnetic response whereas the 10 % loaded nanocomposite preserves a Cr(VI) uptake capacity of 7.

View Article and Find Full Text PDF

In the present study, poly(butylene succinate) (PBSu) and its bionanocomposites containing 1, 2.5, and 5 wt.% biochar (MSP700) were prepared via in situ melt polycondensation in order to investigate the thermal stability and decomposition mechanism of the materials.

View Article and Find Full Text PDF

Non-isothermal crystallization of Poly(butylene succinate) (PBSu)/biochar composites was studied at various constant cooling rates using differential scanning calorimetry. The analysis of the kinetics data revealed that the overall crystallization rate and activation energy of the PBSu polymer were significantly influenced by the addition of biochar. Specifically, the PBSu/5% biochar composite with a higher filler content was more effective as a nucleation agent in the polymer matrix, as indicated by the nucleation activity (ψ) value of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Silica-based ceramics doped with calcium and magnesium, particularly akermanite, show promise for bone regeneration due to their beneficial properties like controllable biodegradation and strong mechanical characteristics.
  • The incorporation of synthetic biopolymers (PLGA) and silica-based nanoparticles (NPs) containing essential elements (e.g., copper and strontium) enhances the mechanical performance and degradation rates of these ceramic scaffolds while incorporating an antibiotic (Moxifloxacin) for antimicrobial benefits.
  • The study demonstrated that these composite scaffolds exhibited improved strength, hemocompatibility, and sustained drug release, making them effective candidates for applications in bone regeneration.
View Article and Find Full Text PDF

Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications.

View Article and Find Full Text PDF

Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with various content of graphene nanoplatelets (GNPs) were synthesized in situ in this work. PEF is a widely known biobased polyester with promising physical properties and is considered as the sustainable counterpart of PET. Despite its exceptional gas barrier and mechanical properties, PEF presents with a low crystallization rate.

View Article and Find Full Text PDF

Engineered electrospun membranes have emerged as promising materials in guided tissue regeneration, as they provide an appropriate framework for the formation of new functional periodontal tissues. The development of multifunctional local drug delivery systems with sustained release of drugs for prolonged infection control can be used in periodontal surgical interventions to simultaneously prohibit epithelium downgrowth and ensure proper healing and regeneration of damaged periodontal tissues. The aim of the present study was the fabrication of novel composite membranes from PLGA/moxifloxacin-loaded mesoporous nanocarriers through electrospinning and the evaluation of their drug release profiles.

View Article and Find Full Text PDF

Packaging applications cover approximately 40% of the total plastics production, whereas food packaging possesses a high proportion within this context. Due to several environmental concerns, petroleum-based polymers have been shifted to their biobased counterparts. Poly(lactic acid) (PLA) has been proved the most dynamic biobased candidate as a substitute of the conventional polymers.

View Article and Find Full Text PDF

Novel chitosan copolymers (CS-g-SBMA) grafted with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) in various molar ratio 1.5:1, 5:1, 11.5:1 and 20:1, were synthesized in the present study.

View Article and Find Full Text PDF

We investigate the thermal transitions and molecular mobility in new nanocomposites of biobased poly(ethylene furanoate) (PEF), by calorimetry and dielectric spectroscopy, supplemented by X-ray diffraction, Fourier transform infra-red spectroscopy and polarized light microscopy. The emphasis is placed on the facilitation of the crystallization of PEF, which is in general low and slow due to structural limitations that result in poor nucleation. Tuning of the crystalline fraction (CF) and semicrystalline morphology are important for optimization of the mechanical performance and manipulation of the permeation of small molecules (e.

View Article and Find Full Text PDF

A series of high-density polyethylene nanocomposites filled with different diameter sizes (5, 15, and 25 μm) of graphene nanoplatelets at various amounts (0.5-5 wt.%) are prepared by the melt-mixing method.

View Article and Find Full Text PDF

Plastics are perceived as modern and versatile materials, but their use is linked to numerous environmental issues as their production is based on finite raw materials (petroleum or natural gas). Additionally, their low biodegradability results in the accumulation of microplastics. As a result, there is extensive interest in the production of new, environmentally friendly, bio-based and biodegradable polymers.

View Article and Find Full Text PDF

Calcium magnesium silicate glasses could be suggested for the synthesis of scaffolds for hard tissue regeneration, as they present a high residual glassy phase, high hardness values and hydroxyapatite-forming ability. The use of trace elements in the human body, such as Cu, could improve the biological performance of such glasses, as Cu is known to play a significant role in angiogenesis. Nano-bioceramics are preferable compared to their micro-scale counterparts, because of their increased surface area, which improves both mechanical properties and apatite-forming ability due to the increased nucleation sites provided, their high diffusion rates, reduced sintering time or temperature, and high mechanical properties.

View Article and Find Full Text PDF

Polypropylene composites reinforced with a filler mixture of graphene nanoplatelet-glass fiber were prepared by melt mixing, while conventional composites containing graphene nanoplatelet and glass fiber were prepared for comparative reasons. An extensive study of thermally stimulated processes such as crystallization, nucleation, and kinetics was carried out using Differential Scanning Calorimetry and Thermogravimetric Analysis. Moreover, effective activation energy and kinetic parameters of the thermal decomposition process were determined by applying Friedman's isoconversional differential method and multivariate non-linear regression method.

View Article and Find Full Text PDF

Bio-based polyesters are a new class of materials that are expected to replace their fossil-based homologues in the near future. In this work, poly(propylene 2,5-furandicarboxylate) (PPF) nanocomposites with graphene nanoplatelets were prepared via the in-situ melt polycondensation method. The chemical structure of the resulting polymers was confirmed by H-NMR spectroscopy.

View Article and Find Full Text PDF

Saint Demetrius of Stomion is a historical monastery placed in the geographical area of Larissa town, Greece, with a remarkable presence from its founding until nowadays. The monastery's present catholicon (main church) has been dated in the 16th century and its surviving wall paintings were constructed in 1758. In addition to the characterization of the materials applied, the purpose of this study is to determine the existence of a sole pictorial phase, that of the mid-18th century, or the occurrence of overpaintings.

View Article and Find Full Text PDF
Article Synopsis
  • * KSbSe (KSS) is an exceptional material that can transition between two amorphous states and a crystalline state at relatively low temperatures (227 and 263 °C).
  • * These transitions in KSbSe result in different optical and electrical properties, indicating its potential for advanced computing applications, such as multistate logic circuits and reconfigurable devices.
View Article and Find Full Text PDF

Hydrogels from natural polymers are widely used in tissue engineering due to their unique properties, especially when regarding the cell environment and their morphological similarity to the extracellular matrix (ECM) of native tissues. In this study, we describe the production and characterization of novel hybrid hydrogels composed of alginate blended with elastin from bovine neck ligament. The properties of elastin as a component of the native ECM were combined with the excellent chemical and mechanical stability as well as biocompatibility of alginate to produce two hybrid hydrogels geometries, namely 2D films obtained using sonication treatment and 3D microcapsules produced by pressure-driven extrusion.

View Article and Find Full Text PDF

Soft tissue regeneration requires the use of matrices that exhibit adequate mechanical properties as well as the ability to supply nutrients and oxygen, and to remove metabolic bio-products. In this work, we describe the development of hydrogels based on the blend between alginate (Alg) and silk fibroin (SF). Herein, we report two main strategies to combine cells with biomaterials: cells are either seeded onto prefabricated hydrogels films (2D), or encapsulated during hydrogel microcapsules formation (3D).

View Article and Find Full Text PDF

Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg(2+) and Cu(2+) or Zn(2+), ions known for their antimicrobial properties, were synthesized by the foam replica technique and tested regarding their bioactive response in SBF, mechanical properties, degradation, and porosity.

View Article and Find Full Text PDF

In this work, the synthesis, structural characteristics, interfacial bonding, and mechanical properties of poly(ε-caprolactone) (PCL) nanocomposites with small amounts (0.5, 1.0, and 2.

View Article and Find Full Text PDF

A systematic investigation of the factors influencing the notable enhancement of the mechanical and thermal properties of nanodiamonds (NDs)-reinforced cross-linked high density polyethylene (PEX) is presented in this work. The effects of crystal structure and molecular conformation as well as filler dispersion and adhesion with the matrix were found to govern the mechanical properties of the final composites. A considerable increase in the strength, toughness, and elastic modulus of the materials was found for the composites with filler content below 1 wt %.

View Article and Find Full Text PDF

Novel hybrid hydrogels based on alginate and keratin were successfully produced for the first time. The self-assembly properties of keratin, and its ability to mimic the extracellular matrix were combined with the excellent chemical and mechanical stability and biocompatibility of alginate to produce 2D and 3D hybrid hydrogels. These hybrid hydrogels were prepared using two different approaches: sonication, to obtain 2D hydrogels, and a pressure-driven extrusion technique to produce 3D hydrogels.

View Article and Find Full Text PDF

Microencapsulation of cells by using biodegradable hydrogels offers numerous attractive features for a variety of biomedical applications including tissue engineering. This study highlights the fabrication of microcapsules from an alginate-gelatin crosslinked hydrogel (ADA-GEL) and presents the evaluation of the physico-chemical properties of the new microcapsules which are relevant for designing suitable microcapsules for tissue engineering. Alginate di-aldehyde (ADA) was synthesized by periodate oxidation of alginate which facilitates crosslinking with gelatin through Schiff's base formation between the free amino groups of gelatin and the available aldehyde groups of ADA.

View Article and Find Full Text PDF