Publications by authors named "Konstantinos Chatzipapas"

Background: This study aimed to develop a novel human cell geometry for the Geant4-DNA simulation toolkit that explicitly incorporates all 23 chromosome pairs of the human cell. This approach contrasts with the existing, default human cell, geometrical model, which utilizes a continuous Hilbert curve.

Methods: A Python-based tool named "complexDNA" was developed to facilitate the design of both simple and complex DNA geometries.

View Article and Find Full Text PDF

Exposure to ionizing radiation can induce genetic aberrations via unrepaired DNA strand breaks. To investigate quantitatively the dose-effect relationship at the molecular level, we irradiated dry pBR322 plasmid DNA with 3 MeV protons and assessed fragmentation yields at different radiation doses using long-read sequencing from Oxford Nanopore Technologies. This technology applied to a reference DNA model revealed dose-dependent fragmentation, as evidenced by read length distributions, showing no discernible radiation sensitivity in specific genetic sequences.

View Article and Find Full Text PDF

Background: This study investigated alternative, non-invasive methods for human papillomavirus (HPV) detection in head and neck cancers (HNCs). We compared two approaches: analyzing computed tomography (CT) scans with a Deep Learning (DL) model and using radiomic features extracted from CT images with machine learning (ML) models.

Methods: Fifty patients with histologically confirmed HNC were included.

View Article and Find Full Text PDF

Purpose: Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET).

Materials And Methods: The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.

View Article and Find Full Text PDF

Purpose: Interdisciplinary scientific communities have shown large interest to achieve a mechanistic description of radiation-induced biological damage, aiming to predict biological results produced by different radiation quality exposures. Monte Carlo track-structure simulations are suitable and reliable for the study of early DNA damage induction used as input for assessing DNA damage. This study presents the most recent improvements of a Geant4-DNA simulation tool named "dsbandrepair".

View Article and Find Full Text PDF

Purpose: This study aimed to develop a computational environment for the accurate simulation of human cancer cell irradiation using Geant4-DNA. New cell geometrical models were developed and irradiated by alpha particle beams to induce DNA damage. The proposed approach may help further investigation of the benefits of external alpha irradiation therapy.

View Article and Find Full Text PDF

A methodology is introduced for the development of an internal dosimetry prediction toolkit for nuclear medical pediatric applications. The proposed study exploits Artificial Intelligence techniques using Monte Carlo simulations as ground truth for accurate prediction of absorbed doses per organ prior to the imaging acquisition considering only personalized anatomical characteristics of any new pediatric patient.GATE Monte Carlo simulations were performed using a population of computational pediatric models to calculate the specific absorbed dose rates (SADRs) in several organs.

View Article and Find Full Text PDF

This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed.

View Article and Find Full Text PDF

Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE.

View Article and Find Full Text PDF

Purpose: This study proposes a novel computational platform that we refer to as IDDRRA (DNA Damage Response to Ionizing RAdiation), which uses Monte Carlo (MC) simulations to score radiation induced DNA damage. MC simulations provide results of high accuracy on the interaction of radiation with matter while scoring the energy deposition based on state-of-the-art physics and chemistry models and probabilistic methods.

Methods: The IDDRRA software is based on the Geant4-DNA toolkit together with new tools that were developed for the purpose of this study, including a new algorithm that was developed in Python for the design of the DNA molecules.

View Article and Find Full Text PDF

Ionizing radiation is a common tool in medical procedures. Monte Carlo (MC) techniques are widely used when dosimetry is the matter of investigation. The scientific community has invested, over the last 20 years, a lot of effort into improving the knowledge of radiation biology.

View Article and Find Full Text PDF

Purpose: This study aims to standardize the simulation procedure in measuring DNA double-strand breaks (DSBs), by using advanced Monte Carlo toolkits, and newly introduced experimental methods for DNA DSB measurement.

Methods: For the experimental quantification of DNA DSB, an innovative DNA dosimeter was used to produce experimental data. GATE in combination with Geant4-DNA toolkit were exploited to simulate the experimental environment.

View Article and Find Full Text PDF