Coastal springs act as bi-directionally preferential flow paths between coastal aquifers and oceans. While these springs can supply coastal ecosystems with nutrients, they also present vulnerabilities such as contamination and seawater intrusion. Despite their significance, substantial knowledge gaps exist regarding coastal springs due to their complex hydrogeological nature.
View Article and Find Full Text PDFThe common hydrogeological concepts assume that water mostly enters and flows in fractured and karstified media through preferential pathways related to discontinuities. But it is difficult to locate discontinuities and even more to relate those to possible or effective water routes, particularly when soil or scree covers near surface features. When and where does water flow underground? How fast? Are we able to monitor the infiltration processes? A unique large scale Electrical Resistivity Tomography (ERT) surface based time-lapse experiment was carried out in fractured and karstified carbonate rock during a typical Mediterranean autumn rainy episode (230mm of rain over 17 days).
View Article and Find Full Text PDFWater isotopes from plant xylem and surrounding environment are increasingly used in eco-hydrological studies. Carrière et al. [1] analyzed a dataset of water isotopes in (i) the xylem of three different tree species, (ii) the surrounding soil and drainage water and (iii) the underlying karst groundwater, to understand tree water uptake during drought in two different Mediterranean forests on karst setting.
View Article and Find Full Text PDFAquifer recharge assessment is a key factor for sustainable groundwater resource management. Although main factors of the spatial and temporal variability of recharge are known, taking them into account in a distributed or semi-distributed model is still a challenging task. This difficulty is increased in karst environments.
View Article and Find Full Text PDFSci Total Environ
January 2020
Karst environments are unusual because their dry, stony and shallow soils seem to be unfavorable to vegetation, and yet they are often covered with forests. How can trees survive in these environments? Where do they find the water that allows them to survive? This study uses midday and predawn water potentials and xylem water isotopes of branches to assess tree water status and the origin of transpired water. Monitoring was conducted during the summers of 2014 and 2015 in two dissimilar plots of Mediterranean forest located in karst environments.
View Article and Find Full Text PDFKarst aquifers are valuable water resources in terms of quantity and quality, hence, their protection and rational management is of utmost importance to sustain water supply. An overview of research articles regarding Karst aquifers in Greece was obtained revealing that progressively the initial simple statistical analysis was replaced from advanced tools but rarely coupled. Additionally, a combined approach including the concept of groundwater vulnerability and pollution risk in conjunction with statistical and hydrodynamic analysis was performed in the complex karst aquifer of Damasi-Titanos in Thessaly Central Greece.
View Article and Find Full Text PDF