The adult zebrafish spinal cord displays an impressive innate ability to regenerate after traumatic insults, yet the underlying adaptive cellular mechanisms remain elusive. Here, we show that while the cellular and tissue responses after injury are largely conserved among vertebrates, the large-size fast spinal zebrafish motoneurons are remarkably resilient by remaining viable and functional. We also reveal the dynamic changes in motoneuron glutamatergic input, excitability, and calcium signaling, and we underscore the critical role of calretinin (CR) in binding and buffering the intracellular calcium after injury.
View Article and Find Full Text PDFZebrafish have an impressive capacity to regenerate neurons in the central nervous system. However, regeneration of the principal neuron of the evolutionary conserved cerebellum, the Purkinje cell (PC), is believed to be limited to developmental stages based on invasive lesions. In contrast, non-invasive cell type-specific ablation by induced apoptosis closely represents a process of neurodegeneration.
View Article and Find Full Text PDFCardiomyocytes play key roles during cardiogenesis, but have poorly understood features, especially in prenatal stages. Here, we characterized human prenatal cardiomyocytes, 6.5-7 weeks post-conception, by integrating single-cell RNA sequencing, spatial transcriptomics, and ligand-receptor interaction information.
View Article and Find Full Text PDFPurkinje cells are critically involved in processing the cerebellar functions by shaping and coordinating commands that they receive. Here, we demonstrate experimentally that in the adult zebrafish valvular part of the cerebellum, the Purkinje cells exhibited variable firing and functional responses and allowed the categorization into three firing classes. Compared with the Purkinje cells in the corpus cerebelli, the valvular Purkinje cells receive weak and occasional input from the inferior olive and are not active during locomotion.
View Article and Find Full Text PDFPhysical exercise stimulates adult neurogenesis, yet the underlying mechanisms remain poorly understood. A fundamental component of the innate neuroregenerative capacity of zebrafish is the proliferative and neurogenic ability of the neural stem/progenitor cells. Here, we show that in the intact spinal cord, this plasticity response can be activated by physical exercise by demonstrating that the cholinergic neurotransmission from spinal locomotor neurons activates spinal neural stem/progenitor cells, leading to neurogenesis in the adult zebrafish.
View Article and Find Full Text PDFPurkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and functionally distinct cell types. Dual patch-clamp recordings showed that the cerebellar circuit contains all Purkinje cell types that cross-communicate extensively using chemical and electrical synapses.
View Article and Find Full Text PDFIn vertebrates, specific command centers in the brain can selectively drive slow-explorative or fast-speed locomotion. However, it remains unclear how the locomotor central pattern generator (CPG) processes descending drive into coordinated locomotion. Here, we reveal, in adult zebrafish, a logic of the V2a interneuron rhythm-generating circuits involving recurrent and hierarchical connectivity that acts in tandem with pacemaker properties to provide an ignition and gear-shift mechanism to start locomotion and change speed.
View Article and Find Full Text PDFIt was recently suggested that supplying the brain with new neurons could counteract Alzheimer's disease (AD). This provocative idea requires further testing in experimental models in which the molecular basis of disease-induced neuronal regeneration could be investigated. We previously found that zebrafish stimulates neural stem cell (NSC) plasticity and neurogenesis in AD and could help to understand the mechanisms to be harnessed for developing new neurons in diseased mammalian brains.
View Article and Find Full Text PDFThe development of nervous system atlases is a fundamental pursuit in neuroscience, since they constitute a fundamental tool to improve our understanding of the nervous system and behavior. As such, neurotransmitter maps are valuable resources to decipher the nervous system organization and functionality. We present here the first comprehensive quantitative map of neurons found in the adult zebrafish spinal cord.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
A particularly essential determinant of a neuron's functionality is its neurotransmitter phenotype. While the prevailing view is that neurotransmitter phenotypes are fixed and determined early during development, a growing body of evidence suggests that neurons retain the ability to switch between different neurotransmitters. However, such changes are considered unlikely in motoneurons due to their crucial functional role in animals' behavior.
View Article and Find Full Text PDFNeuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce locomotion at different speeds and of different modalities.
View Article and Find Full Text PDFWhile cholinergic neuromodulation is important for locomotor circuit operation, the specific neuronal mechanisms that acetylcholine employs to regulate and fine-tune the speed of locomotion are largely unknown. Here, we show that cholinergic interneurons are present in the zebrafish spinal cord and differentially control the excitability of distinct classes of motoneurons (slow, intermediate and fast) in a muscarinic dependent manner. Moreover, we reveal that m2-type muscarinic acetylcholine receptors (mAChRs) are present in fast and intermediate motoneurons, but not in the slow motoneurons, and that their activation decreases neuronal firing.
View Article and Find Full Text PDFSexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination.
View Article and Find Full Text PDFMotor neurons are the final stage of neural processing for the execution of motor behaviours. Traditionally, motor neurons have been viewed as the 'final common pathway', serving as passive recipients merely conveying to the muscles the final motor program generated by upstream interneuron circuits. Here we reveal an unforeseen role of motor neurons in controlling the locomotor circuit function via gap junctions in zebrafish.
View Article and Find Full Text PDFAnimals constantly make behavioral choices to facilitate moving efficiently through their environment. When faced with a threat, animals make decisions in the midst of other ongoing behaviors through a context-dependent integration of sensory stimuli. In vertebrates, the mechanisms underlying behavioral selection are poorly understood.
View Article and Find Full Text PDFSpinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear.
View Article and Find Full Text PDFNeural networks in the spinal cord can generate locomotion in the absence of rhythmic input from higher brain structures or sensory feedback because they contain an intrinsic source of excitation. However, the molecular identity of the spinal interneurons underlying the excitatory drive within the locomotor circuit has remained unclear. Using optogenetics, we show that activation of a molecularly defined class of ipsilateral premotor interneurons elicits locomotion.
View Article and Find Full Text PDFIn vertebrates, spinal circuits drive rhythmic firing in motoneurons in the appropriate sequence to produce locomotor movements. These circuits become active early during development and mature gradually to acquire the flexibility necessary to accommodate the increased behavioral repertoire of adult animals. The focus here is to elucidate how different pools of motoneurons are organized and recruited and how membrane properties contribute to their mode of operation.
View Article and Find Full Text PDFLocomotor movements are coordinated by a network of neurons that produces sequential muscle activation. Different motoneurons need to be recruited in an orderly manner to generate movement with appropriate speed and force. However, the mechanisms governing recruitment order have not been fully clarified.
View Article and Find Full Text PDFThe beta(2)-adrenergic receptors (ARs) are G-protein-coupled receptors that mediate the physiological responses to adrenaline and noradrenaline. The present study aimed to determine the regional distribution of beta(2)-ARs in the adult zebrafish (Danio rerio) brain by means of in vitro autoradiographic and immunohistochemical methods. The immunohistochemical localization of beta(2)-ARs, in agreement with the quantitative beta-adrenoceptor autoradiography, showed a wide distribution of beta(2)-ARs in the adult zebrafish brain.
View Article and Find Full Text PDFThe alpha(2A)-adrenoceptor (AR) subtype, a G protein-coupled receptor located both pre- and postsynaptically, mediates adrenaline/noradrenaline functions. The present study aimed to determine the alpha(2A)-AR distribution in the adult zebrafish (Danio rerio) brain by means of immunocytochemistry. Detailed mapping showed labeling of alpha(2A)-ARs, in neuropil, neuronal somata and fibers, glial processes, and blood vessels.
View Article and Find Full Text PDF