Neural stem cells divide during embryogenesis and juvenile life to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that, in every asymmetric cell division, progenitors send a Delta-Notch signal to their sibling stem cells. Here, we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the larval central nervous system, which can progress to malignant tumours after allografting to adult hosts.
View Article and Find Full Text PDFE proteins are a special class of basic helix-loop-helix (bHLH) proteins that heterodimerize with many bHLH activators to regulate developmental decisions, such as myogenesis and neurogenesis. Daughterless (Da) is the sole E protein in Drosophila and is ubiquitously expressed. We have characterized two transcription activation domains (TADs) in Da, called activation domain 1 (AD1) and loop-helix (LH), and have evaluated their roles in promoting peripheral neurogenesis.
View Article and Find Full Text PDFbHLH-O proteins are a subfamily of the basic-helix-loop-helix transcription factors characterized by an 'Orange' protein-protein interaction domain. Typical members are the Hairy/E(spl), or Hes, proteins, well studied in their ability, among others, to suppress neuronal differentiation in both invertebrates and vertebrates. Hes proteins are often effectors of Notch signalling.
View Article and Find Full Text PDFNeurogenesis in all animals is triggered by the activity of a group of basic helix-loop-helix transcription factors, the proneural proteins, whose expression endows ectodermal regions with neural potential. The eventual commitment to a neural precursor fate involves the interplay of these proneural transcriptional activators with a number of other transcription factors that fine tune transcriptional responses at target genes. Most prominent among the factors antagonizing proneural protein activity are the HES basic helix-loop-helix proteins.
View Article and Find Full Text PDFThe decision of ectodermal cells to adopt the sensory organ precursor fate in Drosophila is controlled by two classes of basic-helix-loop-helix transcription factors: the proneural Ac and Sc activators promote neural fate, whereas the E(spl) repressors suppress it. We show here that E(spl) proteins m7 and mgamma are potent inhibitors of neural fate, even in the presence of excess Sc activity and even when their DNA-binding basic domain has been inactivated. Furthermore, these E(spl) proteins can efficiently repress target genes that lack cognate DNA binding sites, as long as these genes are bound by Ac/Sc activators.
View Article and Find Full Text PDF