Publications by authors named "Konstantina Tsarapatsani"

Lower extremity amputation and requirement of peripheral artery revascularization are common outcomes of undiagnosed peripheral artery disease patients. In the current work, prediction models for the need of amputation or peripheral revascularization focused on hypertensive patients within seven years follow up are employed. We applied machine learning (ML) models using classifiers such as Extreme Gradient Boost (XGBoost), Random Forest (RF) and Adaptive Boost (AdaBoost), that will allow clinicians to identify the patients at risk of these two endpoints using simple clinical data.

View Article and Find Full Text PDF

Endothelial wall shear stress (ESS) is a biomechanical force which plays a role in the formation and evolution of atherosclerotic lesions. The purpose of this study is to evaluate coronary computed tomography angiography (CCTA)-based ESS in coronary arteries without atherosclerosis, and to assess factors affecting ESS values. CCTA images from patients with suspected coronary artery disease were analyzed to identify coronary arteries without atherosclerosis.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are among the most serious disorders leading to high mortality rates worldwide. CVDs can be diagnosed and prevented early by identifying risk biomarkers using statistical and machine learning (ML) models, In this work, we utilize clinical CVD risk factors and biochemical data using machine learning models such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), Extreme Grading Boosting (XGB) and Adaptive Boosting (AdaBoost) to predict death caused by CVD within ten years of follow-up. We used the cohort of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study and 2943 patients were included in the analysis (484 annotated as dead due to CVD).

View Article and Find Full Text PDF

The type of the atherosclerotic plaque has significant clinical meaning since plaque vulnerability depends on its type. In this work, we present a computational approach which predicts the development of new plaques in coronary arteries. More specifically, we employ a multi-level model which simulates the blood fluid dynamics, the lipoprotein transport and their accumulation in the arterial wall and the triggering of inflammation using convection-diffusion-reaction equations and in the final level, we estimate the plaque volume which causes the arterial wall thickening.

View Article and Find Full Text PDF