Publications by authors named "Konstantina Nika"

The tyrosine kinase Lck is mandatory for initiating signaling responses downstream the antigenic T cell receptor (TCR). Numerous studies have shown that a prerequisite for efficient and well-balanced Lck regulation and function is its finely orchestrated spatial distribution pattern, especially at the plane of the plasma membrane. There is a wealth of knowledge on Lck localization sites, preference for specialized lipid microenvironments and colocalization partners.

View Article and Find Full Text PDF

The Src family kinases (SFKs) Lck and Lyn are crucial for lymphocyte development and function. Albeit tissue-restricted expression patterns the two kinases share common functions; the most pronounced one being the phosphorylation of ITAM motifs in the cytoplasmic tails of antigenic receptors. Lck is predominantly expressed in T lymphocytes; however, it can be ectopically found in B-1 cell subsets and numerous pathologies including acute and chronic B-cell leukemias.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the surrounding boundary lipids affect the behavior of integral membrane proteins, specifically focusing on the Lck kinase and its regulation by the CD45 phosphatase.
  • Using advanced techniques like super-resolution microscopy and flow cytometry, researchers found that Lck is generated at the plasma membrane and maintained in a dynamic balance with its unphosphorylated form through a process called trans-autophosphorylation.
  • The findings suggest that fluctuations in the lipid bilayer rather than previously assumed phase-separated domains are key to understanding Lck formation and its interactions with CD45, highlighting the role of boundary lipids in this process.
View Article and Find Full Text PDF

Ectopic Lck expression signifies interpatient and intratumoral heterogeneity in CLL. Lck expression identifies CLL subpopulations with aberrant BCR signaling.

View Article and Find Full Text PDF

The organization of the T-cell's plasma membrane continues to nourish the curiosity of immunologists, cell biologists and biophysicists. The main reason is the biological and biomedical interest to understand the workings of the cell-cell communication network activated by T-cells during an immune response. The molecular armamentarium of the T-cell plasma membrane helps to identify with high sensitivity, specificity and rapidity antigens from invading microbial pathogens and prepare adequate countermeasures to fend them off, while protecting from attacks against our normal tissues.

View Article and Find Full Text PDF

THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion.

View Article and Find Full Text PDF

Background: One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive.

Methodology/principal Findings: We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78.

View Article and Find Full Text PDF

T cell antigen receptor (TCR) and coreceptor ligation is thought to initiate signal transduction by inducing activation of the kinase Lck. Here we showed that catalytically active Lck was present in unstimulated naive T cells and thymocytes and was readily detectable in these cells in lymphoid organs. In naive T cells up to approximately 40% of total Lck was constitutively activated, part of which was also phosphorylated on the C-terminal inhibitory site.

View Article and Find Full Text PDF

Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened.

View Article and Find Full Text PDF

A novel human dual-specific protein phosphatase (DSP), designated DUSP27, is here described. The DUSP27 gene contains three exons, rather than the predicted 4-14 exons, and encodes a 220 amino acid protein. DUSP27 is structurally similar to other small DSPs, like VHR and DUSP13.

View Article and Find Full Text PDF

Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice.

View Article and Find Full Text PDF

A SNP in the gene PTPN22 is associated with type 1 diabetes, rheumatoid arthritis, lupus, Graves thyroiditis, Addison disease and other autoimmune disorders. T cells from carriers of the predisposing allele produce less interleukin-2 upon TCR stimulation, and the encoded phosphatase has higher catalytic activity and is a more potent negative regulator of T lymphocyte activation. We conclude that the autoimmune-predisposing allele is a gain-of-function mutant.

View Article and Find Full Text PDF

Carbon nanotubes are a man-made form of carbon that did not exist in our environment until very recently. Due to their unique chemical, physical, optical, and magnetic properties, carbon nanotubes have found many uses in industrial products and in the field of nanotechnology, including in nanomedicine. However, very little is yet known about the toxicity of carbon nanotubes.

View Article and Find Full Text PDF

Ligation of the TCR along with the coreceptor CD28 is necessary to elicit T cell activation in vivo, whereas TCR triggering alone does not allow a full T cell response. Upon T cell activation of human peripheral blood T cells, we found that the majority of cAMP was generated in T cell lipid rafts followed by activation of protein kinase A. However, upon TCR and CD28 coligation, beta-arrestin in complex with cAMP-specific phosphodiesterase 4 (PDE4) was recruited to lipid rafts which down-regulated cAMP levels.

View Article and Find Full Text PDF

The molecular mechanisms of signal transduction have been the focus of intense research during the last decade. In T cells, much of the work has centered on protein tyrosine kinase-mediated signaling from the TCR and cytokine receptors, while the study of protein tyrosine phosphatases has lagged behind. Nevertheless, it has now become clear that many protein tyrosine phosphatases play equally important roles in T cell physiology and that no kinase-regulated system would work without the counterbalancing participation of phosphatases.

View Article and Find Full Text PDF

We report that a single-nucleotide polymorphism (SNP) in the gene (PTPN22) encoding the lymphoid protein tyrosine phosphatase (LYP), a suppressor of T-cell activation, is associated with type 1 diabetes mellitus (T1D). The variants encoded by the two alleles, 1858C and 1858T, differ in a crucial amino acid residue involved in association of LYP with the negative regulatory kinase Csk. Unlike the variant encoded by the more common allele 1858C, the variant associated with T1D does not bind Csk.

View Article and Find Full Text PDF

Sec14p homology domains are found in a large number of proteins from plants, yeast, invertebrates, and higher eukaryotes. We report that the N-terminal Sec14p homology domain of the human protein tyrosine phosphatase PTP-MEG2 binds phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) in vitro and colocalizes with this lipid on secretory vesicle membranes in intact cells. Point mutations that prevented PtdIns(3,4,5)P(3) binding abrogated the capacity of PTP-MEG2 to induce homotypic secretory vesicle fusion in cells.

View Article and Find Full Text PDF

The HePTP (haematopoietic protein tyrosine phosphatase) is a negative regulator of the ERK2 (extracellular signal-regulated protein kinase 2) and p38 MAP kinases (mitogen-activated protein kinases) in T-cells. This inhibitory function requires a physical association of HePTP through an N-terminal KIM (kinase-interaction motif) with ERK and p38. We previously reported that PKA (cAMP-dependent protein kinase) phosphorylates Ser-23 within the KIM of HePTP, resulting in dissociation of HePTP from ERK2.

View Article and Find Full Text PDF