Annu Int Conf IEEE Eng Med Biol Soc
July 2023
A preliminary analysis was conducted on data acquired from RNA sequencing and SomaScan platforms, for the classification of patients with Inflammation of Unknown Origin. To this end, a multimodal data integration approach was designed, by combining the two platforms, in order to assess the potentiality of learning estimators, using the differentially expressed features from the independent profiling experiments of both platforms. The classification framing was the differentiation of Inflammation of Unknown Origin patients against a multitude of Systemic Autoinflammatory disease patients.
View Article and Find Full Text PDFBackground: Health professionals are often faced with the need to identify women at risk of manifesting poor psychological resilience following the diagnosis and treatment of breast cancer. Machine learning algorithms are increasingly used to support clinical decision support (CDS) tools in helping health professionals identify women who are at risk of adverse well-being outcomes and plan customized psychological interventions for women at risk. Clinical flexibility, cross-validated performance accuracy, and model explainability permitting person-specific identification of risk factors are highly desirable features of such tools.
View Article and Find Full Text PDFIdentifying individual patient characteristics that contribute to long-term mental health deterioration following diagnosis of breast cancer (BC) is critical in clinical practice. The present study employed a supervised machine learning pipeline to address this issue in a subset of data from a prospective, multinational cohort of women diagnosed with stage I-III BC with a curative treatment intention. Patients were classified as displaying stable HADS scores (Stable Group; n = 328) or reporting a significant increase in symptomatology between BC diagnosis and 12 months later (Deteriorated Group; n = 50).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
A meta-analysis study was conducted to compare high-throughput technologies in the classification of Adult-Onset Still's Disease patients, using differentially expressed genes from independent profiling experiments. We exploited two publicly available datasets from the Gene Expression Omnibus and performed a separate differential expression analysis on each dataset to extract statistically important genes. We then mapped the genes of the two datasets and subsequently we employed well-established machine learning algorithms to evaluate the denoted genes as candidate biomarkers.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Being diagnosed with breast cancer (BC) can be a traumatic experience for patients who may experience symptoms of depression. In order to facilitate the prevention of such symptoms, it is crucial to understand how and why depressive symptoms emerge and evolve for each individual, from diagnosis through treatment and recovery. In the present work, data from a multicentric study of 706 BC patients followed for 12 months are analyzed.
View Article and Find Full Text PDFFor many decades, the clinical unmet needs of primary Sjögren's Syndrome (pSS) have been left unresolved due to the rareness of the disease and the complexity of the underlying pathogenic mechanisms, including the pSS-associated lymphomagenesis process. Here, we present the HarmonicSS cloud-computing exemplar which offers beyond the state-of-the-art data analytics services to address the pSS clinical unmet needs, including the development of lymphoma classification models and the identification of biomarkers for lymphomagenesis. The users of the platform have been able to successfully interlink, curate, and harmonize 21 regional, national, and international European cohorts of 7,551 pSS patients with respect to the ethical and legal issues for data sharing.
View Article and Find Full Text PDFBackground: Although several studies have been launched towards the prediction of risk factors for mortality and admission in the intensive care unit (ICU) in COVID-19, none of them focuses on the development of explainable AI models to define an ICU scoring index using dynamically associated biological markers.
Methods: We propose a multimodal approach which combines explainable AI models with dynamic modeling methods to shed light into the clinical features of COVID-19. Dynamic Bayesian networks were used to seek associations among cytokines across four time intervals after hospitalization.
The coronavirus disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is consistently causing profound wounds in the global healthcare system due to its increased transmissibility. Currently, there is an urgent unmet need to identify the underlying dynamic associations among COVID-19 patients and distinguish patient subgroups with common clinical profiles towards the development of robust classifiers for ICU admission and mortality. To address this need, we propose a four step pipeline which: (i) enhances the quality of multiple timeseries clinical data through an automated data curation workflow, (ii) deploys Dynamic Bayesian Networks (DBNs) for the detection of features with increased connectivity based on dynamic association analysis across multiple points, (iii) utilizes Self Organizing Maps (SOMs) and trajectory analysis for the early identification of COVID-19 patients with common clinical profiles, and (iv) trains robust multiple additive regression trees (MART) for ICU admission and mortality classification based on the extracted homogeneous clusters, to identify risk factors and biomarkers for disease progression.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Breast cancer diagnosis has been associated with poor mental health, with significant impairment of quality of life. In order to ensure support for successful adaptation to this illness, it is of paramount importance to identify the most prominent factors affecting well-being that allow for accurate prediction of mental health status across time. Here we exploit a rich set of clinical, psychological, socio-demographic and lifestyle data from a large multicentre study of patients recently diagnosed with breast cancer, in order to classify patients based on their mental health status and further identify potential predictors of such status.
View Article and Find Full Text PDFArtificial Intelligence (AI) has recently altered the landscape of cancer research and medical oncology using traditional Machine Learning (ML) algorithms and cutting-edge Deep Learning (DL) architectures. In this review article we focus on the ML aspect of AI applications in cancer research and present the most indicative studies with respect to the ML algorithms and data used. The PubMed and dblp databases were considered to obtain the most relevant research works of the last five years.
View Article and Find Full Text PDFDisplaying resilience following a diagnosis of breast cancer is crucial for successful adaptation to illness, well-being, and health outcomes. Several theoretical and computational models have been proposed toward understanding the complex process of illness adaptation, involving a large variety of patient sociodemographic, lifestyle, medical, and psychological characteristics. To date, conventional multivariate statistical methods have been used extensively to model resilience.
View Article and Find Full Text PDFIn this study, we propose a dynamic Bayesian network (DBN)-based approach to behavioral modelling of community dwelling older adults at risk for falls during the daily sessions of a hologram-enabled vestibular rehabilitation therapy programme. The component of human behavior being modelled is the level of frustration experienced by the user at each exercise, as it is assessed by the NASA Task Load Index. Herein, we present the topology of the DBN and test its inference performance on real-patient data.
View Article and Find Full Text PDFTo present a framework for data sharing, curation, harmonization and federated data analytics to solve open issues in healthcare, such as, the development of robust disease prediction models. Data curation is applied to remove data inconsistencies. Lexical and semantic matching methods are used to align the structure of the heterogeneous, curated cohort data along with incremental learning algorithms including class imbalance handling and hyperparameter optimization to enable the development of disease prediction models.
View Article and Find Full Text PDFLymphoma development constitutes one of the most serious clinico-pathological manifestations of patients with Sjögren's Syndrome (SS). Over the last decades the risk for lymphomagenesis in SS patients has been studied aiming to identify novel biomarkers and risk factors predicting lymphoma development in this patient population. The current study aims to explore whether genetic susceptibility profiles of SS patients along with known clinical, serological and histological risk factors enhance the accuracy of predicting lymphoma development in this patient population.
View Article and Find Full Text PDFObjectives: To address the need for automatically assessing the quality of clinical data in terms of accuracy, relevance, conformity, and completeness, through the concise development and application of an automated method which is able to automatically detect problematic fields and match clinical terms under a specific domain.
Methods: The proposed methodology involves the automated construction of three diagnostic reports that summarise valuable information regarding the types and ranges of each term in the dataset, along with the detected outliers, inconsistencies, and missing values, followed by a set of clinically relevant terms based on a reference model which serves as a set of terms which describes the domain knowledge of a disease of interest.
Results: A case study was conducted using anonymised data from 250 patients who were diagnosed with primary Sjögren's syndrome (pSS), yielding reliable outcomes that were highlighted for clinical evaluation.
Data quality assessment has gained attention in the recent years since more and more companies and medical centers are highlighting the importance of an automated framework to effectively manage the quality of their big data. Data cleaning, also known as data curation, lies in the heart of the data quality assessment and is a key aspect prior to the development of any data analytics services. In this work, we present the objectives, functionalities and methodological advances of an automated framework for data curation from a medical perspective.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
We propose a meta-analysis scheme for identifying differentially expressed genes in Oral Squamous Cell Carcinoma (OSCC) from different microarray studies. We detect a subset of relevant features and further classify samples under two experimental conditions (i.e healthy and cancer samples) for better patient stratification.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
We propose a methodology for predicting oral cancer recurrence using Dynamic Bayesian Networks. The methodology takes into consideration time series gene expression data collected at the follow-up study of patients that had or had not suffered a disease relapse. Based on that knowledge, our aim is to infer the corresponding dynamic Bayesian networks and subsequently conjecture about the causal relationships among genes within the same time-slice and between consecutive time-slices.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2017
Oral squamous cell carcinoma has been characterized as a complex disease which involves dynamic genomic changes at the molecular level. These changes indicate the worth to explore the interactions of the molecules and especially of differentially expressed genes that contribute to cancer progression. Moreover, based on this knowledge the identification of differentially expressed genes and related molecular pathways is of great importance.
View Article and Find Full Text PDFHeart failure is one of the most common diseases worldwide. In recent years, Ventricular Assist Devices (VADs) have become a valuable option for patients with advanced HF. Although it has been shown that VADs improve patient survival rates, several complications persist during left VAD (LVAD) support.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Oral cancer can arise in the head and neck region. Due to the aggressive nature of the disease, which often leads to poor prognosis, Oral Squamous Cell Carcinoma (OSCC) constitutes the 8(th) most common neoplasms in humans. In the present work we formulate gene interaction network from oral cancer genomic data using Dynamic Bayesian Networks (DBNs).
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2015
Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type have become a necessity in cancer research, as it can facilitate the subsequent clinical management of patients. The importance of classifying cancer patients into high or low risk groups has led many research teams, from the biomedical and the bioinformatics field, to study the application of machine learning (ML) methods.
View Article and Find Full Text PDF