Publications by authors named "Konstantina Chachlaki"

Developmental stress can detrimentally affect adult female reproductive behavior, influencing sexual receptivity and fertility. Recent work has demonstrated neuronal nitric oxide (NO) synthase (nNOS)-promoted NO release in the ventromedial hypothalamus as a nexus between pre-pubertal stress and adult sexual behavior in mice.

View Article and Find Full Text PDF
Article Synopsis
  • - The first 1000 days of life are crucial for brain and overall development, with a phenomenon called minipuberty influencing the hypothalamic-pituitary-gonadal (HPG) axis and reproductive health in humans and other mammals.
  • - Recent studies suggest that minipuberty affects not only reproductive functions but also cognitive and sensory maturation, with specific roles of nitric oxide (NO) being identified in this process; cognitive deficits in conditions like Down syndrome may stem from a decline in GnRH production linked to minipuberty.
  • - The impact of COVID-19 on GnRH production raises concerns about possible long-term effects on neurodevelopment, as GnRH neurons may be vulnerable to SARS-CoV-2, leading
View Article and Find Full Text PDF
Article Synopsis
  • Recent research links loss of gonadotropin-releasing hormone (GnRH) to cognitive decline, suggesting a similar mechanism may underlie neurological symptoms in post-COVID patients.
  • Investigations revealed persistent low testosterone levels in some men post-COVID could indicate hypothalamic impact, connecting hormonal changes to cognitive issues.
  • Dysfunction of GnRH neurons and certain brain cells due to SARS-CoV-2 could lead to reproductive, metabolic, and mental health problems, potentially increasing risks for neurological disorders across all ages.
View Article and Find Full Text PDF

Background: The maturation of the hypothalamic-pituitary-gonadal (HPG) axis is crucial for the establishment of reproductive function. In female mice, neuronal nitric oxide synthase (nNOS) activity appears to be key for the first postnatal activation of the neural network promoting the release of gonadotropin-releasing hormone (GnRH), i.e.

View Article and Find Full Text PDF

The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in .

View Article and Find Full Text PDF

Women with polycystic ovary syndrome (PCOS) frequently experience decreased sexual arousal, desire, and sexual satisfaction. While the hypothalamus is known to regulate sexual behavior, the specific neuronal pathways affected in patients with PCOS are not known. To dissect the underlying neural circuitry, we capitalized on a robust preclinical animal model that reliably recapitulates all cardinal PCOS features.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate.

View Article and Find Full Text PDF

The parasellar region, located around the sella turcica, is an anatomically complex area representing a crossroads for important adjacent structures. Several lesions, including tumoral, inflammatory vascular, and infectious diseases may affect this area. Although invasive pituitary tumors are the most common neoplasms encountered within the parasellar region, other tumoral (and cystic) lesions can also be detected.

View Article and Find Full Text PDF

Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.

View Article and Find Full Text PDF

The chemical signalling molecule nitric oxide (NO), which freely diffuses through aqueous and lipid environments, subserves an array of functions in the mammalian central nervous system, such as the regulation of synaptic plasticity, blood flow and neurohormone secretion. In this Review, we consider the cellular and molecular mechanisms by which NO evokes short-term and long-term changes in neuronal activity. We also highlight recent studies showing that discrete populations of neurons that synthesize NO in the hypothalamus constitute integrative systems that support life by relaying metabolic and gonadal signals to the neuroendocrine brain, and thus gate the onset of puberty and adult fertility.

View Article and Find Full Text PDF

Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry.

View Article and Find Full Text PDF

A sparse population of a few hundred primarily hypothalamic neurons forms the hub of a complex neuroglial network that controls reproduction in mammals by secreting the 'master molecule' gonadotropin-releasing hormone (GnRH). Timely postnatal changes in GnRH expression are essential for puberty and adult fertility. Here we report that a multilayered microRNA-operated switch with built-in feedback governs increased GnRH expression during the infantile-to-juvenile transition and that impairing microRNA synthesis in GnRH neurons leads to hypogonadotropic hypogonadism and infertility in mice.

View Article and Find Full Text PDF

Yif1B is an intracellular membrane-bound protein belonging to the Yip family, shown previously to control serotonin 5-HT1A receptor targeting to dendrites. Because some Yip proteins are involved in the intracellular traffic between the ER and the Golgi, here we investigated the precise localization of Yif1B in HeLa cells. We found that Yif1B is not resident into the Golgi, but rather belongs to the IC compartment.

View Article and Find Full Text PDF

The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile.

View Article and Find Full Text PDF

Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful.

View Article and Find Full Text PDF